Heterogeneous System Architecture (HSA)

Heterogeneous System Architecture (HSA)

• Provides a unified view of fundamental computing elements

 HSA allows a programmer to write applications that seamlessly integrate CPUs (called *latency compute units*) with GPUs (called *throughput compute units*), while benefiting from the best attributes of each

HSA Accelerated Processing Unit

HSA Foundation

HSA Solution Stack

Goals of the HSA Foundation

- To enable power-efficient performance
- To improve programmability of heterogeneous processors
- To increase the portability of code across processors and platforms
- To increase the pervasiveness of heterogeneous solutions throughout the industry

Implementation Components

- A heterogeneous hardware platform that integrates both LCUs and TCUs, which operate coherently in shared memory
- A software compilation stack consisting of a compiler, linker and loader
- A user-space runtime system, which also includes debugging and profiling capabilities
- Kernel-space system components
 - Device rivers

HSA Runtime Stack

Accelerated Processing Unit (APU)

• It is a processor that combines the CPU and the GPU elements into a single architecture (Appeared publicly in 2006)

Different Design Goals

- CPUs are base on maximizing performance of a single thread
- GPUs maximize throughput at cost of individual thread performance
- CPU
 - Dedicated to reduce latency to memory
- GPU
 - Focus on ALU and registers
 - Focus on covering latency

Balanced Computing

Bandwidth

When to use an APU

Mobile Computing

- Low Power-usage = Longer Battery Life
- Affordable Casual Gaming solution, or Media workstation.

• Computations that can be done by GPU

- Allows both GPU and CPU to work together on one chip, without the need for a discrete graphics card.
- Bitcoin, etc.

• Budget Desktops (exception of higher model Intel APU's)

Who's Interested?

- AMD
 - Fusion Platform
- Intel
 - Sandy/Ivy Bridge series
- IBM/Sony
 - Cell (PS3)
- NVidia
 - Project Denver (ARM-based)

• AMD APU generations:

- 1. AMD announced the first generation APUs, *Llano* for highperformance and *Brazos* for low-power devices in January 2011
- 2. The second generation *Trinity* for high-performance and *Brazos-2* for low-power devices were announced in June 2012
- 3. The third generation *Kaveri* for high performance devices was launched in January 2014, while *Kabini* and *Temash* for low-power devices were announced in the summer of 2013
- 4. In November 2017, HP released the Envy x360, featuring the Ryzen 5 2500U APU, the first 4th generation APU, based on the Zen CPU architecture and the Vega graphics architecture

AMD Trinity APU

Intel Haswell

4th Generation Intel® Core™ Processor Die Map 22nm Tri-Gate 3-D Transistors

AMD APU

AND NOW THE APU IS EVERYWHERE

APU Advantages

- Eliminates the need for discrete GPU
- Good energy efficiency as it consumes very less power than the discrete GPU
- Improved heat dissipation
- Low latency access to the GPU
- Shared unified virtual memory for both the CPU and GPU
- Discrete graphics card can be installed with the APU to improve the performance to a greater extent
- Cheaper when compared to the discrete GPU's

APU Disadvantages

- Supports only entry level games on PC and not high resolution graphics like 4K
- Cannot upgrade the graphics card separately
- They have no internal memory and they take a chunk out of your RAM
- Not as powerful and flexible as the discrete GPU's
- Do not contain the number of cores as the discrete GPU's and so the performance will be no better than theirs

Intel Xeon Phi

Xeon Phi — MIC

- Intel decided to enter the GPU market in the mid 2000s
- Xeon Phi = first product of Intel's Many Integrated Core (MIC) architecture
- Co-processor
 - PCI Express card
 - Stripped down Linux operating system (busybox)
- Dense, simplified processor
 - Many power-hungry operations removed
 - Wider vector unit
 - Higher hardware thread count

Lots of names

- Many Integrated Core architecture, aka MIC
- Knights Corner, aka KNC (code name)
- Intel Xeon Phi Co-processor SE10P (product name)

- Leverage x86 architecture (CPU with many cores)
 - x86 cores that are simpler, but allow for more compute throughput
- Leverage existing x86 programming models
- Dedicate much of the silicon to floating point ops
- Cache coherent
- Increase floating-point throughput
- Strip expensive features
 - out-of-order execution
 - branch prediction
- Widen SIMD registers for more throughput
- Fast (GDDR5) memory on card

- Xeon Phi are a series of x86 manycore processor designed and made entirely by Intel
- Intended for use in supercomputers, servers, and high-end workstations
- Its architecture allows use of standard programming languages and APIs such as OpenMP
- Initially in the form of PCIe-based add-on cards, a second generation product, codenamed *Knights Landing* was announced in June 2013

Code Name	Technology	Comments
Knights Ferry	45 nm	offered as PCIe card; derived from Larrabee project
Knights Corner	22 nm	derived from P54C; vector processing unit; first device to be announced as Xeon Phi
Knights Landing	14 nm	Abbr.: KNL ^[6] ; derived from Silvermont/Airmont (Intel Atom) ^[7] ; AVX-512
Knights Hill	10 nm	canceled
Knights Mill	14 nm	nearly identical to Knights Landing but optimized for deep learning

Intel Many Integrated Core (MIC)

- Intel Xeon Phi (2012)
- PCI Express card, a "PC in a PC"
- 10s of x86-based cores
 - Hardware multithreading
 - Instruction set extensions for HPC
- Very high-bandwidth local GDDR5 memory

Software Environment on the Xeon Phi

• The card runs a modified embedded Linux

- Called Micro OS (uOS) by Intel
- The card boots from an image located on the host
- The card does not have persistent memory
- Provides a TCP/IP stack emulation over PCIe
- Card appears as a network device to the host
- Busybox is included for a variety of utilites (Is, top, ...)

Xeon CPU (host) N sockets,	PCle	Xeon Phi (mic0) 60 cores, 8 GB GDDR Linux (uOS)
M cores, Linux		

MPSS and uOS

Runs a stripped-down version of Linux

MPSS: Manycore Platform Software Stack by Intel®

Advantages of Xeon Phi

Intel's MIC is based on x86 technology

- X86 cores w/ caches and cache coherency
- SIMD instruction set
- Programming for MIC is similar to programming for CPUs
 - Familiar languages: C/C++ and Fortran
 - Familiar parallel programming models: OpenMP & MPI
 - MPI on host and on the coprocessor
 - Any code can run on MIC, not just kernels

• Optimizing for MIC is similar to optimizing for CPUs

- "Optimize once, run anywhere"

Deep Learning: Deep Neural Netwokrs (DNN)

Deep Neural Networks

• The neurons are grouped into three different types of layers:

- 1. Input Layer
- 2. Hidden Layer(s)
- 3. Output Layer

Each connection between neurons is associated with a weight

- This weight dictates the importance of the input value
- The initial weights are set randomly

Each neuron has an Activation Function

Training the Deep Neural Network

Requirements:

- A large data set
- A large amount of computational power

Cost Function

- Define how wrong the outputs were from the real outputs
 - Turn to 0 when the outputs are the same as the data set outputs
- Minimize the cost function and update the weights using gradient decent automatically
 - Converge and achieve a desired accuracy

Why to Talk about Deep Learning Here?

- The whole deep neural network could be treated as a special "virtual processor"
 - Training: guide the DNN model to converge and achieve a desired accuracy
 - Inference: use a trained DNN model to make predictions against previously unseen data
- Turing Award winner Geoffrey Hinton (Godfather of Deep Learning): "... not only program computers, but also show [data to] computers ..."
 - Show Data = Train DNN

The DNN training datasets, not any program, define the behavior of DNN "virtual processor"

Tensor Processing Unit (TPU)

Tensor Processing Unit (TPU)

- A custom ASIC for the phase of Neural Networks (Al accelerator)
 - Google announced its TPU in May 2016 (4 generations + Edge TPU)
 - Improve the cost performance when compared to GPUs
 - Use Google's own TensorFlow software
 - TensorFlow is a symbolic math library, written in Python, C++, CUDA, and worked on CPU, GPU, and TPU

TPUv3 board (top left), TPUv2 board (bottom left), and TPUv3 board close-up (right)

TensorFlow

TPUv1 Architecture

With dedicated Matrix Multiply Unit

- Most to memory and computation
- Less to control
- Half the size of CPUs and GPUs

TPUv2 Architecture

TPUv2 Chip

- 16 GB of HBM
- 600 GB/s mem BW
- Scalar unit: 32b float
- MXU: 32b float accumulation but reduced precision for multipliers
- 45 TFLOPS

TPUv2 Architecture

Cloud TPU

- All model parameters are kept in on-chip high bandwidth memory
- The cost of launching computations on cloud TPU is amortized by executing many training steps in a loop
- Input training data is streamed to an "infeed" queue on the cloud TPU
- A program running on cloud TPU retrieves batches from these queues during each training step
- The TensorFlow server running on the host machine (the CPU attached to the cloud TPU device) fetches data and pre-processes it before "infeeding" to the cloud TPU hardware
- Data parallelism:
 - Cores on a cloud TPU execute an identical program residing in their own respective HBM in a synchronous manner
 - A reduction operation is performed at the end of each neural network step across all the cores

Who's in TPU Team?

• Professor David Patterson retired from U.C. Berkeley in 2016 after a 40-year academic career in computer architecture

David Patterson, left, and John Hennessy won the 2017 ACM Turing Award for inventing RISC processors. They're now pushing special-purpose chips such as Google's Tensor Processing Unit, center, for speeding up AI.

University of California, Google, Stanford University

- TPUs allows us to make predictions very quickly and respond within fraction of a second.
- First instance of a computer defeating a world champion in the ancient game of Go.
- Accelerate performance of linear computation, key of machine learning applications.
- Minimize the time to accuracy when you train large, complex network models

- Linear algebra that require heavy branching or are not computed on the basis of element wise algebra
- Non-dominated matrix multiplication is not likely to perform well on TPUs
- Workloads that access memory using sparse technique
- Workloads that use highly precise arithmetic operations