9.3 Polar Coordinates

- We choose a point O in the plane which is called the pole (origin). Then we draw a half-line (called the polar axis) starting at O. The line will be the positive x—axis in Cartesian coordinates.
- Now we choose anther point P in the plane and let r (possibly "-") be the distance from O to P and let θ be the angle between the polar axis and the line OP. Then the point P is represented by the ordered pair (r, θ) and r, θ are called polar coordinates of P.
- If r > 0, the point (r, θ) lies in the same quadrant as θ ; if r < 0, it lies in the quadrant on the opposite side of the pole. Thus we notice that $(-r, \theta)$ represents the same point as $(r, \theta + \pi)$ or (r, θ) as $(-r, \theta + \pi)$.

Example1

Plot the points whose polar coordinates are given.

- 1. $(1,7\pi/4)$
- 2. $(4, -3\pi)$
- 3. $(-2, \pi/4)$
 - How to convert the polar coordinates (r, θ) to Cartesian coordinates (x, y)?

$$x = r\cos\theta$$
 $y = r\sin\theta$ for all r and θ .

Example2

Convert the point $(3, \pi/6)$ from polar to Cartesian coordinates.

• How to convert Cartesian coordinates (x, y) to the polar coordinates (r, θ) ?

$$r^2 = x^2 + y^2 \quad \tan \theta = \frac{y}{x}$$

Example3

Represent the point with Cartesian coordinates $(\sqrt{3},-1)$ in terms of polar coordinates.

• Tangents To Polar Curves To find a tangent line to a polar curve $r = f(\theta)$, let θ be a parameter and write parametric equations as

$$x = r\cos\theta = f(\theta)\cos\theta$$
 $y = r\sin\theta = f(\theta)\sin\theta$

Then using the Product Rule, we have

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

Example4

- 1. For the cardioid $r=1+\sin\theta$, find the slope of the tangent line, when $\theta=\pi/4$.
- 2. Find the slope of the tangent line to the polar curve $r=1/\theta$ when $\theta=\pi$.

The area of region bounded by the polar curve $r=f(\theta)$ and by the rays $\theta=a$ and $\theta=b$ is

$$A = \int_a^b \frac{1}{2} r^2 d\theta = \int_a^b \frac{1}{2} [f(\theta)]^2 d\theta$$

Example 5

- 1. Find the area of the region bounded by $r = \sin \theta$ with $0 \le \theta \le \pi$.
- 2. Find the area of the region enclosed by the cardioid $r = 1 + \sin \theta$.
- 3. Find the area of the region enclosed by one loop of the curve $r = \sin 2\theta$.