10.3 Polar Coordinates

- We choose a point O in the plane which is called the pole (origin). Then we draw a half-line (called the polar axis) starting at O. The line will be the positive x-axis in Cartesian coordinates.
- Now we choose anther point P in the plane and let r (possibly "-") be the distance from O to P and let θ be the angle between the polar axis and the line OP. Then the point P is represented by the ordered pair (r, θ) and r, θ are called polar coordinates of P.
- If r > 0, the point (r, θ) lies in the same quadrant as θ; if r < 0, it lies in the quadrant on the opposite side of the pole. Thus we notice that (-r, θ) represents the same point as (r, θ + π) or (r, θ) as (-r, θ + π).

Example1

Plot the points whose polar coordinates are given.
1. (1,7π/4)
2. (4,-3π)
3. (-2,π/4)

How to convert the polar coordinates (r, θ) to Cartesian coordinates (x, y)?

$$x = r \cos \theta$$
 $y = r \sin \theta$ for all r and θ .

Example2

Convert the point $(3, \pi/6)$ from polar to Cartesian coordinates.

How to convert Cartesian coordinates (x, y) to the polar coordinates (r, θ)?

$$r^2 = x^2 + y^2$$
 tan $heta = rac{y}{x}$

Example3

Represent the point with Cartesian coordinates $(\sqrt{3}, -1)$ in terms of polar coordinates.

• Tangents To Polar Curves

To find a tangent line to a polar curve $r = f(\theta)$, let θ be a parameter and write parametric equations as

$$x = r \cos \theta = f(\theta) \cos \theta$$
 $y = r \sin \theta = f(\theta) \sin \theta$

Then using the Product Rule, we have

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

Example4

1. For the cardioid $r = 1 + \sin \theta$, find the slope of the tangent line, when $\theta = \pi/4$. 2. Find the slope of the tangent line to the polar curve $r = 1/\theta$ when $\theta = \pi$.

10.4 Area and Length in Polar Coordinates

The area of region bounded by the polar curve $r = f(\theta)$ and by the rays $\theta = a$ and $\theta = b$ is

$$A = \int_a^b \frac{1}{2}r^2 d\theta = \int_a^b \frac{1}{2}[f(\theta)]^2 d\theta$$

Example

Find the area of the region bounded by r = sin θ with 0 ≤ θ ≤ π.
 Find the area of the region enclosed by the cardioid r = 1 + sin θ.
 Find the area of the region enclosed by one loop of the curve r = sin 2θ.