10.4 Comparison Tests

@ Recall the comparison theorem for improper integrals.

The (Direct) Comparison Test

Suppose that Y a, and ¥ b, are series a,, b, >0 forall n > N > 1.
1. If ¥ b, is convergent and a, < b, for all n> N, then ¥ a, is also

convergent.
2. If ¥ b, is divergent and a, > b, for all n > N, then Y a, is also
divergent.

@ When we use the direct comparison, we have to have some
known(easier) series Y b,(the geometric series or p—series) for
the purpose of comparison.



Determine whether the following series converges or diverges.
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@ Determine whether the following series is convergent or

divergent.
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In this example, the direct comparison test does not apply.




The Limit Comparison Test

Suppose that Y a, and Y b, are series ap, b, > 0 for all n > N.
If
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where ¢ > 0 is a finite number, then either both series converge or
both diverge, i.e.,
1. if ¥ b, converges, then Y a, converges

2. if ¥ b, diverges, then Y a, diverges

Determine whether the following series converges or diverges
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Determine whether the following series converges or diverges
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