10.5 The Ratio and Root Tests

Ratio Test

1. If

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L<1,$$

then $\sum_{n=1}^{\infty} a_n$ is (absolutely) convergent.

2. If

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L>1 \text{ or } \lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\infty,$$

then $\sum_{n=1}^{\infty} a_n$ is divergent.

3. If

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=1,$$

the Ratio Test is inconclusive.

Root Test

1. If

$$\lim_{n\to\infty}|a_n|^{1/n}=L<1,$$

then $\sum_{n=1}^{\infty} a_n$ is (absolutely) convergent.

2. If

$$\lim_{n\to\infty}\left|a_{n}\right|^{1/n}=L>1 \text{ or } \lim_{n\to\infty}\left|a_{n}\right|^{1/n}=\infty,$$

then $\sum_{n=1}^{\infty} a_n$ is divergent.

3. If

$$\lim_{n\to\infty}|a_n|^{1/n}=1,$$

the Root Test is inconclusive.