10.8 Taylor and Maclaurin Series

- Which functions have power series representation?
- 4 How can we find such representations?

We can answer those questions, assuming that functions are smooth. The smooth function f means that f is continuously differentiable.

Taylor Series

If f has a power series representation (expansion) at x=a, we obtain the Taylor Series of the function f at x=a (or about x=a or centered at x=a)

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \cdots$$

For the special case a = 0, we have the Maclaurin Series

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f''(0)}{3!} x^3 + \cdots$$

- If f can be represented as a power series about x = a, then f is equal to the sum of its Taylor series.
- But there exist functions that are not equal to sum of their Taylor Series. See #70 in pp.747.

Example1

Find the Maclaurin series of the function $f(x) = e^x$ and its radius of convergence.

• Roughly speaking, any smooth function can be approximated by Taylor polynomial near x = a. For example,

$$e^{x} \approx 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots + \frac{x^{n}}{n!}.$$

 The higher order Taylor polynomial provide the best approximation.

Example2

- 1. Assume that f has a power series expansion.
- 2. Find the Maclaurin series for f(x).
- 3. Also find the associate radius of convergence.

$$(1) f(x) = \sin x \qquad (2) f(x) = \cos x$$

(3)
$$f(x) = (1-x)^{-2}$$
 (4) $f(x) = e^{3x}$

The Binomial Series

If k is any real number and |x| < 1, then

$$(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n$$

=1+kx+\frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \cdots

Example3

Use the binomial series to expand the function $f(x) = \sqrt{x+1}$ as a power series. Find the radius of convergence.