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11.1 Sequences

A sequence can be considered as a list of numbers written in a

de�nite order:

a1, a2, a3, · · · ,an, · · ·

A Sequence is a function f whose domain is the set of positive

integers.

So we can consider the nth term an as the value of function f

at the number n, i.e., an = f (n).
The sequence is denoted by {a1, a2, · · · ,an, · · ·}, {an}, {an}∞

n=1
.

Example 1

Find a formula of the general term an of the following sequences

{2, 7, 12, 17, 22, · · ·}.{
−1

3
, 3
9
,− 5

27
, 7
81
,− 9

243
, · · ·
}
.

{1,1, 2,3,5,8,13,21,34, · · ·}: Called the Fibonacci Sequence.
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De�nition

A sequence {an} has the limit L and we write

lim
n→∞

an = L or an→ L as n→ ∞.

If limn→∞ an exists, we say that the sequence {an} converges.
Otherwise, we say that {an} diverges.

Theorem

If limx→∞ f (x) = L and f (n) = an, when n is an integer, then

lim
n→∞

an = L.

Fact

For r > 0

lim
n→∞

1

nr
= 0.
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Limit Laws for sequences

If {an} and {bn} are convergent sequences and c is a

constant, then

lim
n→∞

(an+bn) = lim
n→∞

an+ lim
n→∞

bn

lim
n→∞

(an−bn) = lim
n→∞

an− lim
n→∞

bn

lim
n→∞

c bn = c lim
n→∞

bn

lim
n→∞

(an bn) = lim
n→∞

an lim
n→∞

bn

lim
n→∞

(
an

bn

)
=

limn→∞ an

limn→∞ bn

lim
n→∞

ap
n
=
(
lim
n→∞

an

)
p

if p > 0 and an > 0
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Sandwich(Squeeze) Theorem

If an ≤ bn ≤ cn for n ≥ n0 and limn→∞ an = limn→ cn = L, then

limn→∞ bn = L.

Example 2

Determine whether the sequence converges or diverges. If it

converges, �nd the limit.

an =
sin2 n
n

.

an =
|cosn|
3n

.

Theorem

If limn→∞ |an|= 0, then limn→∞ an = 0.
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Example 3

1. Find the following limits.

lim
n→∞

n

2n+1
.

lim
n→∞

lnn2

n
.

2. Determine whether an = (−1)n is convergent or divergent.

3. Evaluate

lim
n→∞

(−1)n

n
if it exists.
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Theorem

If limn→∞ an = L and the function f is continuous at L, then

lim
n→∞

f (an) = f
(
lim
n→∞

an

)
= f (L).

Example 3

1. Find

lim
n→∞

cos(π/n).

2. Determine if an = n!/nn is convergent, where n! = 1 ·2 ·3 · · · · ·n.

Fact

lim
n→∞

rn =


0 if |r |< 1

1 if r = 1

∞ if r > 1

diverges if r <−1

Dr. Jeongho Ahn Jeongho.ahn@mathstat.astate.edu



De�nitions

1. {an} is called increasing if an ≤ an+1 for all n ≥ 1.

2. {an} is called decreasing if an ≥ an+1 for all n ≥ 1.

3. {an} is called monotonic if it is either increasing or decreasing.

Example 4

1. The {3/(n+1)} is a decreasing sequence.

2. Show that the following sequence is decreasing

an =
2n

n2+1
.
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De�nitions

1. {an} is bounded above if there is a number M such that

an ≤M for all n ≥ 1.

2. {an} is bounded below if there is a number m such that

an ≥m for all n ≥ 1.

3. {an} is bounded above and below, it is a bounded sequence.

Monotonic Sequence Theorem

Every bounded, monotonic sequence is convergent.

Example 5

Determine whether the following sequence is bounded.

1. an = n(−1)n
2. an = 2n/(n2+1)
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