11.4 The Comparison Tests

• Recall the comparison theorem for improper integrals.

The (Direct) Comparison Test

Suppose that $\sum a_n$ and $\sum b_n$ are series $a_n, b_n \ge 0$ for all $n \ge N \ge 1$. 1. If $\sum b_n$ is convergent and $a_n \le b_n$ for all $n \ge N$, then $\sum a_n$ is also convergent. 2. If $\sum b_n$ is divergent and $a_n \ge b_n$ for all $n \ge N$, then $\sum a_n$ is also

divergent.

 When we use the direct comparison, we have to have some known(easier) series ∑b_n(the geometric series or p-series) for the purpose of comparison.

Example1

Determine whether the following series converges or diverges. 1. $\sum_{n=1}^{\infty} \frac{1}{3^n+2}$ 2. $\sum_{n=1}^{\infty} \frac{7}{3n^2 + 4n + 1}$ 3. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{1/2}}$

• Determine whether the following series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{1}{3^n - 2}.$$

In this example, the direct comparison test does not apply.

The Limit Comparison Test

Suppose that $\sum a_n$ and $\sum b_n$ are series a_n , $b_n \ge 0$ for all $n \ge N$. If

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c$$

where c > 0 is a finite number, then either both series converge or both diverge, i.e.,

- 1. if $\sum b_n$ converges, then $\sum a_n$ converges
- 2. if $\sum b_n$ diverges, then $\sum a_n$ diverges

Example2

Determine whether the following series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{1}{3^n - 1}.$$

Example3

Determine whether the following series converges or diverges 1.

$$\sum_{n=2}^{\infty} \frac{2n+1}{\sqrt{n^4-n}}$$

$$\sum_{n=1}^{\infty} \frac{3n^2 - n}{\sqrt{2n^5 + n + 5}}$$

2.

$$\sum_{n=1}^{\infty} \left(2 + \frac{1}{n}\right) e^{-n}$$

$$\sum_{n=1}^{\infty} \frac{1}{(n-1)!}$$

 $\sum_{n=1}^{\infty} \sin\left(\frac{1}{2n}\right)$