11.9 Representation of Functions as Power Series

- Our goal is to learn how to express a power series representation for certain types of functions by manupulating geometric series or by differentiating or integrating such a series.
- We recall the geometric series

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots = \frac{1}{1-x}, \quad \text{for } |x| < 1.$$

Example1

1. Express $1/(1-x^2)$ as the sum of a power series and find the interval of convergence.

2. Find a power series representation for 2/(x+3) and find the interval of convergence.

3. Find a power series representation for $x/(4+x^2)$ and find the interval of convergence.

Theorem

If $\sum_{n=0}^{\infty} c_n (x-a)^n$ has the radius of convergence R > 0, then 1. the function f is differentiable on the interval (a-R, a+R):

$$f(x) := \sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \cdots$$

2.

3.

$$\frac{d}{dx}\left[\sum_{n=0}^{\infty}c_n(x-a)^n\right] = \sum_{n=0}^{\infty}\left[\frac{d}{dx}c_n(x-a)^n\right]$$

$$\int \left[\sum_{n=0}^{\infty} c_n (x-a)^n\right] dx = \sum_{n=0}^{\infty} \int c_n (x-a)^n dx$$

The radii of conv. of the power series in eqs. 2 and 3 are both R.

 Note that both sides in eqs. of 2 and 3 may not be equal for other types of series and that the interval of convergence for 2 and 3 may be different from 1.

Example2

1. Consider the geometric series $\sum_{n=0}^{\infty} x^n = 1/(1-x)$ for |x| < 1. Express $1/(1-x)^2$ as a power series. Find R.

2. Find a power series representation for $\ln(1-x)$ and its radius of convergence. Express $\ln(\frac{1}{2})$ as an infinite series.

3. Find a power series representation for $f(x) = \tan^{-1} x$. Find R. 4. Evaluate the indefinite integral as a power series. What is the radius of convergence?

(1)
$$\int \frac{1}{1-x^{10}} dx$$

(2)
$$\int \frac{x-\tan^{-1}x}{x^2} dx$$