11 Vectors and the Geometric of Space

Dr. Jeongho Ahn

Department of Mathematics & Statistics

ASU

Outline of Chapter 11

- Three-Dimensional Coordinates Systems
- Vectors and Vector Algebra
- The Dot Product
- The Cross Product
- Oescribing Lines and Planes

11.1 Three-Dimensional Coordinates Systems

- The coordinates in a three dimensional system are of the form (x, y, z), called the ordered triple.
- A point P is located at $(x,y,z) \Rightarrow P(x,y,z)$.
- The Cartesian product $\mathbb{R}^3=\mathbb{R} imes\mathbb{R} imes\mathbb{R}=\{(x,y,z)|x,y,z\in\mathbb{R}\}$

Example1

Describe the region of \mathbb{R}^3 represented by the equation or inequality.

- 1. z = 1
- 2. $x^2 + y^2 + z^2 \le 4$
 - The Distance between $P_1(x_1,y_1,z_1)$ and $P_2(x_2,y_2,z_2)$ is

$$|\overline{P_1P_2}| = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2}.$$

Example2

Find the distance between $P_1(1,2,3)$ and $P_2(-3,-1,0)$.

• The Standard Equation for a Sphere with Radius r and Center (x_0, y_0, z_0) is

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$$

Example3

Find the center and radius of the sphere.

$$1 x^2 + y^2 + z^2 + 4x - 6z + 3 = 0$$

2.
$$2x^2 + 2y^2 + 2z^2 = -8x + 24y + 2$$