11.3 The Dot Product

Definition

Definition of Dot Product

The dot product of $\mathsf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathsf{v} = \langle v_1, v_2, v_3 \rangle$ is

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

Example1

Find a · b.

(1)
$$a = \langle -2, 1/4 \rangle$$
, $b = \langle 1, -4 \rangle$ (2) $a = \langle -1, -3, 2 \rangle$, $b = \langle 6, -1/3, 5 \rangle$

Properties of the Dot Product

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$
- 3. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
- 4. $u \cdot u = |u|^2$
- **5.** $0 \cdot v = 0$

Those can be easily proved.

Theorem

If the angle $\theta(0 \le \theta \le \pi)$ is the angle between two nonzero vectors $u = \langle u_1, u_2, u_3 \rangle$ and $v = \langle v_1, v_2, v_3 \rangle$, then we have

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$$
.

 The above theorem can be proved using definition of dot product and laws of cosines. If we apply the theorem, we can find determine the angle between two vectors:

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}$$

Example2

Find the angle between $u = \langle 1, -1, 0 \rangle$ and $v = \langle 0, 1, 1 \rangle$.

Perpendicular(Orthogonal) Vectors: $u \perp v \Leftrightarrow u \cdot v = 0$.

Example3

Show that $u = \langle 2, 1, -3 \rangle$ is perpendicular to $v = \langle 1, 4, 2 \rangle$.

Vector Projections

 Scalar component of u in the direction of v(Scalar projection of u onto v):

$$\mathsf{comp}_{\mathsf{v}}\mathsf{u} = |\mathsf{u}|\cos\theta = \frac{\mathsf{u}\cdot\mathsf{v}}{|\mathsf{v}|}$$

• Vector projection of u onto v:

$$\operatorname{proj}_{\mathsf{V}}\mathsf{u} = \left(\frac{\mathsf{u} \cdot \mathsf{v}}{|\mathsf{v}|^2}\right)\mathsf{v}$$

This means that u is projected onto v.

Physical meaning of vector projection: If u represents a
force applied to a box and the box is moving in the direction of
v, proj_vu represents the effective force in the direction of v.

Example4

Find the vector projection of u = 6i - j + 2k onto v = i - j - 3k and the scalar component of u in the direction of v.