11.4 The Cross Product

- The cross product is defined in the 3-dimensional system and is used to describe how a plane is tilting.
- The cross product has too many applications of engineering and physics.

Fact

1. How to find the **determinant of** 3×3 **matrix**?

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

2. How to find the **determinant of** 2×2 **matrix**?

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

• For $u = \langle u_1, u_2, u_3 \rangle$ and $v = \langle v_1, v_2, v_3 \rangle$, we can express $u \times v$ in the expansion of the symbolic determinant:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}.$$

Example 1

Find $\mathbf{u} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{u}$ if $\mathbf{u} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$ and $\mathbf{v} = -4\mathbf{i} + 3\mathbf{j} - \mathbf{k}$.

Definition

$$\mathbf{u} \times \mathbf{v} = (|\mathbf{u}||\mathbf{v}|\sin\theta)\mathbf{n}.$$

• If $u \neq 0$ and $v \neq 0$ are not parallel, they determine a plane. Then we select a unit vector n perpendicular to the plane by the right-hand rule, which implies that the vector $u \times v$ is perpendicular to both u and v.

Theorem

The vector $\mathbf{u} \times \mathbf{v} \perp \mathbf{u}$ and \mathbf{v} .

• The Theorem can be proved by using $a \cdot b = 0 \Leftrightarrow a \perp b$.

Corollary

Parallel Vectors

$$u//v \Leftrightarrow u \times v = 0.$$

Fact

 $|u \times v|$ is the area of a parallelogram.

• It follows from the definition of the cross product that $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}||\sin \theta ||\mathbf{n}|| = |\mathbf{u}||\mathbf{v}|\sin \theta$

Example2

- 1. Find a vector perpendicular to the plane of P(-1,1,0), Q(2,-1,1), and R(-1,1,2). Note that the vector is not unique.
- 2. Find the area of the triangle with vertices P, Q, and R.

- For the standard unit vectors i, j, k we can see $i \times j = k$, $j \times k = i$, $k \times i = j$ and $i \times i = 0$, $j \times j = 0$, $k \times k = 0$.
- Properties of the Cross Product
- $\mathbf{0} \quad \mathbf{v} \times \mathbf{u} = -(\mathbf{u} \times \mathbf{v})$
- $(ru) \times v = r(u \times v) = u \times (rv)$
- $u \times (v + w) = u \times v + u \times w$
- $(v+w) \times u = v \times u + w \times u$

- $0 \times u = 0$
 - Those properties can be shown easily by writing the component form of the vectors and using the symbolic expression.
 - Note that $(u \times v) \times w \neq u \times (v \times w)$

Definition

Triple Scalar or Box Product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ $|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|$ is the volume of the parallelepiped, since $|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| = |\mathbf{u}||\mathbf{v} \times \mathbf{w}||\cos\theta|$.

• The triple scalar product can be calculated as the determinant:

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}.$$

• By using the determinant, we can see that $(u \times v) \cdot w = (v \times w) \cdot u = (w \times u) \cdot v$.

Example3

Find the volume of the box(parallelepiped) determined by u = i - 2j - k, v = -2i + k and w = 5j - 4k.