12 Vectors and the Geometric of Space

Dr. Jeongho Ahn

Department of Mathematics \& Statistics

ASU

Outline of Chapter 12

(1) Three-Dimensional Coordinates Systems
(2) Vectors
(3) The Dot Product
(9) The Cross Product
(5) Equations of Lines and Planes

12.1 Three-Dimensional Coordinates Systems

- The coordinates in a three dimensional system are of the form (x, y, z), called the ordered triple.
- A point P is located at $(x, y, z) \Rightarrow P(x, y, z)$.
- The Cartesian product $\mathbb{R}^{3}=\mathbb{R} \times \mathbb{R} \times \mathbb{R}=\{(x, y, z) \mid x, y, z \in \mathbb{R}\}$

Example1

Describe the region of \mathbb{R}^{3} represented by the equation or inequality.

1. $z=1$
2. $x^{2}+y^{2}+z^{2} \leq 4$

- The Distance between $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|\overline{P_{1} P_{2}}\right|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

Example2

Find the distance between $P_{1}(1,2,3)$ and $P_{2}(-3,-1,0)$.

- The Standard Equation for a Sphere with Radius r and Center $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}
$$

Example3

Find the center and radius of the sphere.
$1 x^{2}+y^{2}+z^{2}+4 x-6 z+3=0$
2. $2 x^{2}+2 y^{2}+2 z^{2}=-8 x+24 y+2$

