12.2 Vectors

- Scalar - A quantity having magnitude(size) but no direction, e.g., mass, length, time, temperature, speed.
- Vector - A quantity having both magnitude and direction, e.g., displacement, velocity, force, acceleration.
(1) A vector is represented by a directed line segment. Consider a vector $\overrightarrow{A B}$ with initial point A and terminal point B.
(2) $|\overrightarrow{A B}|$: The length (magnitude, size) of the vector $\overrightarrow{A B}$.

Definition

$\overrightarrow{A B}=\overrightarrow{C D}$ if they have the same length(size) and direction.

- Several notation of vectors
(1) $\overrightarrow{A B}$ with initial point A and terminal point B
(2) a using lowercase, bold face letter
(3) \vec{a} using lowercase and putting an arrow above the letter
- The zero vector, denoted by 0 has length 0 without directions.

Combining

- Vector +(addition): we can add two vectors by the Triangle Law or the Parallelogram Law.
- Scalar multiplication: for a scalar c and a vector u the scalar multiple $c \mathbf{u}$ is the vector
(1) whose length is $|c|$ times
(2) whose direction is the same as \mathbf{u} if $c>0$
(3) whose direction is opposite to \mathbf{u} if $c<0$ Note that $c \mathbf{u}=\mathbf{0}$ if $c=0$ or $\mathbf{u}=\mathbf{0}$.
- Vector difference: we regard the difference of vectors as the sum of vectors, i.e.,

$$
\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})
$$

where $-\mathbf{v}$ is called the negative of \mathbf{v}.

Components

- If the lowercase letter $\mathbf{u}(\vec{u})$ is used, the initial point of \mathbf{u} is at the origin and \mathbf{u} is called to be in standard position.
For example, $\mathbf{u}=\overrightarrow{O P}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ is the (standard) position vector of the point $P\left(u_{1}, u_{2}, u_{3}\right)$.

Definition

1. The component form of \mathbf{v} is $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, where the initial point is at the origin and terminal point is at $\left(v_{1}, v_{2}, v_{3}\right)$.
2. Consider a vector $\overrightarrow{P Q}$ with the point $P\left(x_{1}, y_{1}, z_{1}\right)$ and point $Q\left(x_{2}, y_{2}, z_{2}\right)$. Then if the standard position vector $\mathbf{v}=\overrightarrow{P Q}$, $\mathbf{v}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle$.
3. The magnitude or length of the vector $\mathbf{v}=\overrightarrow{P Q}$ is

$$
\begin{aligned}
|\mathbf{v}|=|\overrightarrow{P Q}| & =\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}} \\
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
\end{aligned}
$$

Example 1

Find the component form and length of the vector with initial point $P(3,2,1)$ and terminal point $Q(-5,2,2)$.

Definition

Addition(difference) of position vectors and multiplication of a position vector by a scalar.
Let $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ be vectors with a scalar c.

1. $+: \mathbf{u}+\mathbf{v}=\left\langle u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right\rangle$
$-: \mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})=\left\langle u_{1}-v_{1}, u_{2}-v_{2}, u_{3}-v_{3}\right\rangle$
2. Scalar multiplication: $k \mathbf{u}=\left\langle k u_{1}, k u_{2}, k u_{3}\right\rangle$

- The magnitude of $k \mathbf{u}$ is $|k \mathbf{u}|=|k||\mathbf{u}|$. - u has the same magnitude as \mathbf{u} but has the opposite direction.

Example 2

Let $\mathbf{u}=\langle 1,-3,2\rangle \mathbf{v}=\langle 4,5,1\rangle$. Then find

$$
\text { (1) } 2 \mathbf{u} \text { (2) } 3 \mathbf{v}(3) 2 \mathbf{u}+\mathbf{v}(4) 2 \mathbf{u}-3 \mathbf{v}(5)\left|-\frac{1}{2} \mathbf{u}\right|
$$

- Properties of vectors
(1) Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors and a, b be scalars.
(2) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(3) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{v}+(\mathbf{u}+\mathbf{w})$
(3) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}$ and $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
(3) $\mathbf{0 u}=\mathbf{0}$ and $\mathbf{1 u}=\mathbf{u}$
(0) $a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}$ and $(a+b) \mathbf{u}=a \mathbf{u}+b \mathbf{u}$
- A unit vector is a vector whose length is 1 .

If $|\mathbf{u}|=1, \mathbf{u}$ is a unit vector. For example, $\mathbf{u}=\left\langle\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right\rangle \ldots$ Whenever $\mathbf{v} \neq \mathbf{0}$, we have

$$
\left|\frac{1}{|\mathbf{v}|} \mathbf{v}\right|=\left|\frac{1}{|\mathbf{v}|}\right||\mathbf{v}|=\frac{1}{|\mathbf{v}|}|\mathbf{v}|=1,
$$

which implies that we can change any vector v into unit vector $\frac{\mathbf{v}}{|\mathbf{v}|}$ in the direction of \mathbf{v}. $\frac{\mathbf{v}}{|\mathbf{v}|}$ is called the direction of \mathbf{v}.

Definition

Standard unit(basis) vectors: $\mathbf{i}=\langle 1,0,0\rangle \mathbf{j}=\langle 0,1,0\rangle \mathbf{k}=\langle 0,0,1\rangle$

- Any vector $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ can be written as a linear combination of standard unit vectors as follows:
$\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left\langle v_{1}, 0,0\right\rangle+\left\langle 0, v_{2}, 0\right\rangle+\left\langle 0,0, v_{3}\right\rangle=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$.
Consider a vector $\overrightarrow{P Q}$ with the point $P\left(x_{1}, y_{1}, z_{1}\right)$ and point $Q\left(x_{2}, y_{2}, z_{2}\right)$. Then $\overrightarrow{P Q}$ can be expressed by
$\overrightarrow{P Q}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle=\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j}+\left(z_{2}-z_{1}\right) \mathbf{k}$

Example 3

1. If $\mathbf{u}=\langle 1,-2,3\rangle \mathbf{v}=\langle 0,2,-1\rangle$, express the vector $3 \mathbf{u}-3 \mathbf{v}$ in terms of the standard unit(basis) vectors.
2. Find the unit vector in the direction of the vector $\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$.
3. Find a unit vector in the direction of the vector from $P(1,0,2)$ to $Q(3,2,0)$.
