12.3 The Dot Product

Definition

Definition of Dot Product
The dot product of $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}
$$

Example1

Find $\mathbf{a} \cdot \mathbf{b}$.
(1) $\mathbf{a}=\langle-2,1 / 4\rangle, \mathbf{b}=\langle 1,-4\rangle$
(2) $\mathbf{a}=\langle-1,-3,2\rangle, \mathbf{b}=\langle 6,-1 / 3,5\rangle$

Properties of the Dot Product

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$
3. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
4. $\mathbf{u} \cdot \mathbf{u}=|\mathbf{u}|^{2}$
5. $\mathbf{0} \cdot \mathbf{v}=0$

Those can be easily proved.

Theorem

If the angle $\theta(0 \leq \theta \leq \pi)$ is the angle between two nonzero vectors $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, then we have

$$
\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta
$$

- The above theorem can be proved using definition of dot product and laws of cosines. If we apply the theorem, we can find determine the angle between two vectors:

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}
$$

Example2

Find the angle between $\mathbf{u}=\langle 1,-1,0\rangle$ and $\mathbf{v}=\langle 0,1,1\rangle$.
Perpendicular(Orthogonal) Vectors: $\mathbf{u} \perp \mathbf{v} \Leftrightarrow \mathbf{u} \cdot \mathbf{v}=0$.

Example3

Show that $\mathbf{u}=\langle 2,1,-3\rangle$ is perpendicular to $\mathbf{v}=\langle 1,4,2\rangle$.

Vector Projections

- Scalar component of u in the direction of $v(S c a l a r$ projection of u onto v):

$$
\operatorname{comp}_{\mathbf{v}} \mathbf{u}=|\mathbf{u}| \cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}
$$

- Vector projection of \mathbf{u} onto \mathbf{v} :

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}\right) \mathbf{v}
$$

This means that \mathbf{u} is projected onto \mathbf{v}.

- Physical meaning of vector projection: If \mathbf{u} represents a force applied to a box and the box is moving in the direction of $\mathbf{v}, \operatorname{proj}_{\mathbf{v}} \mathbf{u}$ represents the effective force in the direction of \mathbf{v}.

Example4

Find the vector projection of $\mathbf{u}=6 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$ onto $\mathbf{v}=\mathbf{i}-\mathbf{j}-3 \mathbf{k}$ and the scalar component of \mathbf{u} in the direction of \mathbf{v}.

