12.4 The Cross Product

- The cross product is defined in the 3-dimensional system and is used to describe how a plane is tilting.
- The cross product has too many applications of engineering and physics.

Fact

1. How to find the determinant of 3×3 matrix?

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& \quad=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| .
\end{aligned}
$$

2. How to find the determinant of 2×2 matrix?

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

- For $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, we can express $\mathbf{u} \times \mathbf{v}$ in the expansion of the symbolic determinant:

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\left|\begin{array}{cc}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \mathbf{k} .
$$

Example 1

Find $\mathbf{u} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{u}$ if $\mathbf{u}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}$ and $\mathbf{v}=-4 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$.

Definition

$$
\mathbf{u} \times \mathbf{v}=(|\mathbf{u} \| \mathbf{v}| \sin \theta) \mathbf{n}
$$

- If $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$ are not parallel, they determine a plane. Then we select a unit vector \mathbf{n} perpendicular to the plane by the right-hand rule, which implies that the vector $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v}.

Theorem

The vector $\mathbf{u} \times \mathbf{v} \perp \mathbf{u}$ and \mathbf{v}.

- The Theorem can be proved by using $\mathbf{a} \cdot \mathbf{b}=0 \Leftrightarrow \mathbf{a} \perp \mathbf{b}$.

Corollary

Parallel Vectors

$$
\mathbf{u} / / \mathbf{v} \Leftrightarrow \mathbf{u} \times \mathbf{v}=\mathbf{0} .
$$

Fact

$|\mathbf{u} \times \mathbf{v}|$ is the area of a parallelogram.

- It follows from the definition of the cross product that $|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}\|\sin \theta\| \mathbf{n}|=|\mathbf{u}||\mathbf{v}| \sin \theta$

Example2

1. Find a vector perpendicular to the plane of $P(-1,1,0)$, $Q(2,-1,1)$, and $R(-1,1,2)$. Note that the vector is not unique.
2. Find the area of the triangle with vertices P, Q, and R.

- For the standard unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ we can see
$\mathbf{i} \times \mathbf{j}=\mathbf{k}, \quad \mathbf{j} \times \mathbf{k}=\mathbf{i}, \quad \mathbf{k} \times \mathbf{i}=\mathbf{j}$ and
$\mathbf{i} \times \mathbf{i}=\mathbf{0}, \quad \mathbf{j} \times \mathbf{j}=\mathbf{0}, \quad \mathbf{k} \times \mathbf{k}=\mathbf{0}$.
- Properties of the Cross Product
(1) $\mathbf{v} \times \mathbf{u}=-(\mathbf{u} \times \mathbf{v})$
(2) $(r \mathbf{u}) \times \mathbf{v}=r(\mathbf{u} \times \mathbf{v})=\mathbf{u} \times(r \mathbf{v})$
(3) $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$
(4) $(\mathbf{v}+\mathbf{w}) \times \mathbf{u}=\mathbf{v} \times \mathbf{u}+\mathbf{w} \times \mathbf{u}$
(5) $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$
(6) $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{u}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$
(7) $\mathbf{0} \times \mathbf{u}=0$
- Those properties can be shown easily by writing the component form of the vectors and using the symbolic expression.
- Note that $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} \neq \mathbf{u} \times(\mathbf{v} \times \mathbf{w})$

Definition

Triple Scalar or Box Product $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$
$|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})|$ is the volume of the parallelepiped, since
$|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})|=|\mathbf{u}||\mathbf{v} \times \mathbf{w}||\cos \theta|$.

- The triple scalar product can be calculated as the determinant:

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\left|\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
$$

- By using the determinant, we can see that

$$
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}=(\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v} .
$$

Example3

Find the volume of the box(parallelepiped) determined by $\mathbf{u}=\mathbf{i}-2 \mathbf{j}-\mathbf{k}, \mathbf{v}=-2 \mathbf{i}+\mathbf{k}$ and $\mathbf{w}=5 \mathbf{j}-4 \mathbf{k}$.

