12.5 Equations of Lines and Planes in Space

- Vector Equation for a line

Vector Equation of a line L through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to \mathbf{v} :

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v} \text { or } \mathbf{r}_{0}+\frac{t}{|\mathbf{v}|} \mathbf{v}, \quad-\infty<t<\infty,
$$

where \mathbf{r} is the position vector of a point $P(x, y, z)$ on L and \mathbf{r}_{0} is the position vector of $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$.

- Parametric Equation for a Line

The standard parametrization of the line through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is

$$
x=x_{0}+t v_{1}, \quad y=y_{0}+t v_{2}, \quad z=z_{0}+t v_{3}, \quad-\infty<t<\infty .
$$

- Symmetric Equations for a Line

$$
\frac{x-x_{0}}{v_{1}}=\frac{y-y_{0}}{v_{2}}=\frac{z-z_{0}}{v_{3}}
$$

where $v_{1} \neq 0, v_{2} \neq 0 \quad v_{3} \neq 0$.

- Line segment from \mathbf{r}_{0} to \mathbf{r}_{1} is given by the vector equation

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t\left(\mathbf{r}_{1}-\mathbf{r}_{0}\right)=(1-t) \mathbf{r}_{0}+t \mathbf{r}_{1}, \quad 0 \leq t \leq 1
$$

Example1

1. Find a vector equation and parametric equations for the line that passes through the point $(-1,0,3)$ and is parallel to the vector $\mathbf{v}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$. Find two other points on the line.
2. Find parametric equations and symmetric equations for the line through $P(-3,2,-1)$ and $Q(-1,1,4)$.
3. Find a vector equation and parametric equations for line segment from $(2,-1,3)$ to $(3,5,1)$.
4. Show that the lines L_{1} and L_{2} with parametric equations are parallel.
5. Show that the lines L_{2} and L_{3} with parametric equations are skew.

$$
\begin{aligned}
& L_{1}: x=-6 t, \quad y=1+9 t, \quad z=-3 t \\
& L_{2}: x=1+2 s, \quad y=4-3 s, \quad z=s \\
& L_{3}: x=-2 t, \quad y=1+2 t, \quad z=-3 t
\end{aligned}
$$

- Equations for a Plane

For arbitray points $P(x, y, z)$ the plane through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ normal to $\mathbf{n}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$ has
(1) Vector equation: $\mathbf{n} \cdot \overrightarrow{P_{0} P}=0$
(2) Component equation:

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

- Component equation simplified: $A x+B y+C z=D$ with $D=A x_{0}+B y_{0}+C z_{0}$.

Example2

1. Find an equation for the plane through $P_{0}(-2,1,5)$ perpendicular to $\mathbf{n}=4 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$.
2. Find an equation for the plane through $A(0,0,1), B(3,0,0)$, and $C(0,2,0)$.

Example3

1. Find parametric equations for the line in which the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$ intersect. Find the angle between those planes.
2. Show that a formula for the distance D from a point $P\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $a x+b y+c z+d=0$ is

$$
D=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

