13 Vector Functions

Dr. Jeongho Ahn
Department of Mathematics \& Statistics
ASU

Outline of Chapter 13

(1) Vector functions and Space Curves
(2) Derivatives and Integrals of Vector functions
(3) Arc Length and Curvature
(9) Motion in Space: Velocity and Acceleration

13.1 Vector functions and Space Curves

- Consider a particle (body) moving through three dimensional space during a time interval l. Then how do we describe the particle(body)'s motion mathematically?
- For a time interval I, a particle's coordinates are considered as functions:

$$
x=f(t), \quad y=g(t), \quad z=h(t) \quad \text { for } t \in I
$$

So the points $P(x, y, z)=(f(t), g(t), h(t))$ can be represented in vector form:

$$
\mathbf{u}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}=\langle f(t), g(t), h(t)\rangle,
$$

where f, g, h are real functions called the component functions.

- Vector functions cause vector fields which are important to the study of the flow of fluid, gravitational fields, and electromagnetic phenomena.

Example1

If the vector function $\mathbf{r}(t)$ is defined as

$$
\mathbf{r}(t)=\left\langle\frac{t}{t^{2}+1}, \sqrt{2 t-3}, \ln (2-t)\right\rangle
$$

then find the component functions and the domain of $\mathbf{r}(t)$.

Theorem

Limits of Vector functions:
If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}=\langle f(t), g(t), h(t)\rangle$, then

$$
\begin{aligned}
\lim _{t \rightarrow a} \mathbf{r}(t) & =\left(\lim _{t \rightarrow a} f(t)\right) \mathbf{i}+\left(\lim _{t \rightarrow a} g(t)\right) \mathbf{j}+\left(\lim _{t \rightarrow a} h(t)\right) \mathbf{k} \\
& =\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} h(t)\right\rangle
\end{aligned}
$$

provided the limits of the component functions exist.

Example2:

1. If $\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+t \mathbf{k}$, find

$$
\lim _{t \rightarrow \pi / 6} \mathbf{r}(t)
$$

2. If $\mathbf{r}(t)=\mathbf{i}+e^{-t} \mathbf{j}+(\sin t / t) \mathbf{k}$, find

$$
\lim _{t \rightarrow 0} r(t)
$$

Definition

Continuous at a Point: A vector function $\mathbf{u}(t)$ is continuous at a point $t=a$ in an interval $/$ if $\lim _{t \rightarrow \mathbf{a}} \mathbf{u}(t)=\mathbf{u}(a)$. The vector function is continuous if it is continuous at all $t \in I$.

- Note that $\mathbf{u}(t)$ is continuous at $t=a \Leftrightarrow$ each component function is continuous at $t=a$.
- $C=\{(x, y, z) \mid x=f(t), y=g(t), z=h(t)$ for $t \in[a, b]\}$ is called a space curve. So C is traced out by a moving particle whose position is $(f(t), g(t), h(t))$ at all $t \in[a, b]$.
- It is not easy to sketch curves for the given vector equations in 3-dimensional coordinate systems. So H.W \#7,9 are optional!

Example3:

1. Find a vector equation and parametric equations for the line segment that joins P to $Q: P(1,-1,2), Q(6,-2,1)$.
2. Find a vector function that represents the curve of the intersection of the cylinder $x^{2}+y^{2}=4$ and the plane $y+z=2$.
