13.2 Derivatives and Integrals of Vector functions

Definition

Suppose that the vector function $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where f, g, h are differentiable at t. Then the Derivative of the Vector function $\mathbf{r}(t)$ is

$$
\mathbf{r}^{\prime}(t)=\frac{d \mathbf{r}}{d t}=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}=\frac{d f}{d t} \mathbf{i}+\frac{d g}{d t} \mathbf{j}+\frac{d h}{d t} \mathbf{k}=\left\langle\frac{d f}{d t}, \frac{d g}{d t}, \frac{d h}{d t}\right\rangle
$$

- The vector $\mathbf{r}^{\prime}(a)$ is called the tangent vector at the point $P(f(a), g(a), h(a))$ to the curve C defined by \mathbf{r}, provided that $\mathbf{r}^{\prime}(a)$ exists and $\mathbf{r}^{\prime}(a) \neq \mathbf{0}$. The Unit Tangent Vector is

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

- The tangent line to the curve C at P is defined to be the line through P parallel to the tangent line vector $\mathbf{r}^{\prime}(a)$.
- We need to figure out its geometric significance.

Example1

1. Find the derivatives of $\mathbf{r}(t)=\left\langle 2+t^{2}, t e^{2 t}, \cos 2 t\right\rangle$.
2. Find the unit tangent vector at the given time $t=0$.

Example2

1. For the curve $\mathbf{r}(t)=\langle\sqrt{t}, 1-t\rangle$, find $\mathbf{r}^{\prime}(t)$ and sketch the position vector $\mathbf{r}(1)$ and tangent vector $\mathbf{r}^{\prime}(1)$.
2. Find parametric equations for the tangent line to the helix with parametric equations

$$
x=\cos t \quad y=\sin t \quad z=t
$$

at the point $(0,1, \pi / 2)$.

- Differentiation Rules for vector functions

Let \mathbf{u}, \mathbf{v} be smooth vector function of t and C be a constant vector and c be any scalar and f any smooth scalar function.
(1) Constant Function Rule: $\frac{d \mathrm{C}}{d t}=\mathbf{0}$.
(2) Scalar Multiple Rules: $\frac{d}{d t}(c \mathbf{u})=c \frac{d \mathbf{u}}{d t}$ and $\frac{d}{d t}(f \mathbf{u})=\frac{d f}{d t} \mathbf{u}+f \frac{d \mathbf{u}}{d t}$.
(3) Sum and Difference Rule: $\frac{d}{d t}(\mathbf{u} \pm \mathbf{v})=\frac{d \mathbf{u}}{d t} \pm \frac{d \mathbf{v}}{d t}$.
(9) Dot product rule: $\frac{d}{d t}(\mathbf{u} \cdot \mathbf{v})=\frac{d \mathbf{u}}{d t} \cdot \mathbf{v}+\mathbf{u} \cdot \frac{d \mathbf{v}}{d t}$
(3) Cross product Rule: $\frac{d}{d t}(\mathbf{u} \times \mathbf{v})=\frac{d \mathbf{u}}{d t} \times \mathbf{v}+\mathbf{u} \times \frac{d \mathbf{v}}{d t}$.
(6) Chain Rule: $\frac{d}{d t}[\mathbf{u}(f(t))]=\frac{d f}{d t} \frac{d \mathbf{u}}{d t}$.

- Vector function of Constant Length.
(1) $|\mathbf{u}(t)|=c$ for any time $t \Rightarrow \mathbf{u}^{\prime}(t) \perp \mathbf{u}$, i.e., $\mathbf{u}^{\prime}(t) \cdot \mathbf{u}(t)=0$.
(2) Geometrically this implies that $\mathbf{u}^{\prime}(t) \perp \mathbf{u}(t)$ at any points on a circle (or sphere) for any time t.

Example3

Show that $\mathbf{r}(t)=\langle\sin t, \cos t, 1\rangle$ has a constant length and is orthogonal to its derivative.

Definition

Indefinite Integral for the Vector Function $\mathbf{u}(t)=\langle f(t), g(t), h(t)\rangle$:

$$
\int \mathbf{u}(t) d t=\left\langle\int f(t) d t, \int g(t) d t, \int h(t) d t\right\rangle
$$

Example4

Find the following indefinite integral

$$
\int\langle\cos t, \sin t, t\rangle d t
$$

Definition

Definite Integral for the Vector function $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$: The definite integral of \mathbf{r} from a to b is

$$
\begin{aligned}
\int_{a}^{b} \mathbf{r}(t) d t & =\left(\int_{a}^{b} f(t) d t\right) \mathbf{i}+\left(\int_{a}^{b} g(t) d t\right) \mathbf{j}+\left(\int_{a}^{b} h(t) d t\right) \mathbf{k} \\
& =\left\langle\int_{a}^{b} f(t) d t, \int_{a}^{b} g(t) d t, \int_{a}^{b} h(t) d t\right\rangle .
\end{aligned}
$$

- Note that f, g, h are integrable over $[a, b] \Leftrightarrow$ Vector function $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$ is integrable over $[a, b]$.

Example5

Evaluate the following definite Integral

$$
\int_{0}^{\pi / 2}((\cos t) \mathbf{i}+(\sin t) \mathbf{j}-2 t \mathbf{k}) d t
$$

