13.4 The Chain Rule for Mutivariable Functions

• For functions with a single variable: Let u = f(x) and x = g(t). If there exit f' and g', then

$$f(g(t))' = f'(g(t))g'(t)$$

$$\frac{du}{dt} = \frac{du}{dx}\frac{dx}{dt}$$
 in Leibniz's notation

Example1

- 1. Find the derivative of $u = (x^3 + 1)^{10}$.
- 2. Find the slope of tangent line to the curve $u = \cos^2 t$ at $t = \pi/4$.
 - However, for functions with more than two variables the Chain rule has several forms.

Theorem

Case I: If u = f(x,y) has continuous f_x and f_y and there exist x'(t) and y'(t), then the composite u = f(x(t), y(t)) is differentiable function of t and

$$\frac{df}{dt} = f_x(x(t), y(t)) \cdot x'(t) + f_y(x(t), y(t)) \cdot y'(t) \text{ or}$$

$$\frac{du}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}.$$

Example1:

1. Apply the Chain rule to find the derivative of

$$u = x y$$

with respect to t along the path $x(t) = \cos t$, $y(t) = \sin t$. What is the derivative's value at $t = \pi/4$?

2. If $z = xy^2 + 3x^2y$, where $x(t) = \cos t$ and $y(t) = \sin 2t$, find dz/dt when t = 0.

Theorem

Case II Suppose that u = f(x,y), x = g(s,t), y = h(s,t) are differentiable, then u has partial derivatives w.r.t. r and s given by

$$\frac{\partial u}{\partial s} = \frac{\partial f}{\partial x} \frac{dx}{ds} + \frac{\partial f}{\partial y} \frac{dy}{ds},$$

$$\frac{\partial u}{\partial t} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt},$$

 s, t are independent variables and x, y are called intermediate variables and u is a dependent variable.

Example2

1. Express $\partial u/\partial t$ and $\partial u/\partial s$ in terms of t and s if

$$u = 2x + y$$
, $x = \frac{t}{s}$, $y = t^2 + \ln s$.

2. Express $\partial u/\partial t$ and $\partial u/\partial s$ in terms of t and s if $u(s,t)=e^r\sin\theta$, $r(s,t)=s\,t$, $\theta(s,t)=\sqrt{s^2+t^2}$.

Theorem

General Version Suppose that $u = f(x_1, x_2, \dots, x_n)$ is a differentiable function of the variables x_1, x_2, \dots, x_n and x_1, x_2, \dots, x_n are differentiable functions of the variable of t_1, t_2, \dots, t_m . Then u is a differentiable function of the variables t_1, t_2, \dots, t_m and the partial derivatives of u are given by the form

$$\frac{\partial u}{\partial t_1} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_1} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_1} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_1},
\frac{\partial u}{\partial t_2} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_2} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_2} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_2},
\dots
\frac{\partial u}{\partial t_m} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_m} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_m} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_m}.$$

 It is helpful to draw the tree diagram in order to memorize the chain rules.

Example3

Use a tree diagram to write out the Chain Rule for the given case.

- 1. u = f(x, y), where x = x(r, s, t), y = y(r, s, t).
- 2. w = f(x, y, z, t), where x = x(u, v), y = y(u, v), z = z(u, v), and t = t(u, v).

Example4

- 1. If $R = \ln(u^2 + v^2)$, where u = 2x + y and v = x 3y, find the value of $\partial R/\partial x$ and $\partial R/\partial y$, when x=y=1.
- 2. If $u = x^3y + y^2z^4$, where $x = rse^{-t}$, $y = r^2s \ln(t+1)$,
- $z = r s^2 \sin t$, find the value of $\partial u/\partial s$, when r = 1, s = -1, t = 0.

- Implicit Differentiation
- Suppose that F(x,y) is differentiable and that F(x,y(x))=0 defines y as a differentiable function of x. Then at any point where $F_y \neq 0$,

$$\frac{dy}{dx} = -\frac{F_x}{F_y}.$$

② Suppose that F(x,y,z) is differentiable and that F(x,y,z(x,y))=0 defines z as a differentiable function of x and y. Then at any point where $F_z\neq 0$,

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}.$$

However, I do not suggest to memorize those formulas.

Example5

- 1. Find dy/dx if $y^2 x^2 \sin xy = 0$, where y = y(x).
- 2. Find $\partial z/\partial x$ and $\partial z/\partial y$ if $x^3 + y^3 + z^3 + 2xyz = 5$. Also find $\partial z/\partial x|_{(1,1,1)}$ and $\partial z/\partial y|_{(1,1,1)}$. Note that z = z(x,y).