13.5 Directional Derivatives and the Gradient Vector

• Directional Derivatives in the plane Our main interest is the rate of change of a function f(x(t),y(t)) along a straight line. Recall a line equation through a point $P_0(x_0,y_0)$ and parallel to the unit vector $\mathbf{u}=u_1\mathbf{i}+u_2\mathbf{j}$. Then the line equation is

$$x(t) = x_0 + t u_1$$
 and $y(t) = y_0 + t u_2$.

Definition

Directional Derivative: The derivative of f(x,y) at $P_0(x_0,y_0)$ in the direction of the **unit vector** $\mathbf{u}=\langle u_1,u_2\rangle$ is the scalar

$$D_{u}f(x_{0},y_{0}) = \lim_{t\to 0} \frac{f(x_{0}+tu_{1},y_{0}+tu_{2})-f(x_{0},y_{0})}{t},$$

provided the limit exists.

• Other Notations for the directional derivative at a point $P_0\left(x_0,y_0\right)$ are

$$D_{\mathsf{u}}f(x_0,y_0)=(D_{\mathsf{u}}f)_{P_0}=\left(\frac{df}{dt}\right)_{\mathsf{u},P_0}.$$

- Note that a physical interpretation $(D_u T)$ is the instantaneous rate of change of temperature in the direction u.
- If the unit vector $\mathbf{u} = \langle u_1, u_2 \rangle$ or $\mathbf{u} = \langle \cos \theta, \sin \theta \rangle$, then

$$D_{u}f(x,y) = f_{x}(x,y)u_{1} + f_{y}(x,y)u_{2} = f_{x}(x,y)\cos\theta + f_{y}(x,y)\sin\theta,$$

where θ is an angle with the positive x-axis.

Example1

Find the directional derivatives $D_{u}f(x,y)$ if

$$f(x,y) = x^3 - 2xy + 3y^2$$

and u is the unit vector given by angle $\theta = \pi/3$. What is $D_{\rm u}f(1,2)$?

- Gradient is derived from the Directional Derivatives
- The rate of change of f(x(t), y(t)) with respect to t is

$$D_{\mathsf{u}}f(x,y) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt},$$

where x(t) and y(t) are differentiable curve.

② Then the rate of change of f(x,y) at $P_0(x_0,y_0)$ in the direction of the unit vector $\mathbf{u} = \langle u_1, u_2 \rangle$ along the line $x = x_0 + tu_1$ and $y = y_0 + tu_2$ is

$$D_{u}f(x_{0},y_{0}) = \left(\frac{\partial f}{\partial x}\right)_{P_{0}} \frac{dx}{dt} + \left(\frac{\partial f}{\partial y}\right)_{P_{0}} \frac{dy}{dt}$$

$$= \left(\frac{\partial f}{\partial x}\right)_{P_{0}} u_{1} + \left(\frac{\partial f}{\partial y}\right)_{P_{0}} u_{2}$$

$$= \left\langle \left(\frac{\partial f}{\partial x}\right)_{P_{0}}, \left(\frac{\partial f}{\partial y}\right)_{P_{0}} \right\rangle \cdot \left\langle u_{1}, u_{2} \right\rangle.$$

Definition

Gradient vector: The gradient of f(x, y) is the vector

$$\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle.$$

• The directional derivatives can be written as

$$D_{\mathsf{u}}f(x,y) = \nabla f(x,y) \cdot \mathsf{u},$$

which expresses the directional derivative in the direction of u as the scalar projection of the gradient vector onto u.

Example2:

- 1. Find the directional derivative of the function $f(x,y)=x^3y^2-2y$ at the point (-2,1) in the direction of the vector $\mathbf{v}=\langle 2,-3\rangle$.
- 2. Find the directional derivative of $f(x,y) = ye^x + \sin(xy)$ at the point (1,0) in the direction of $v = i \sqrt{3}j$.

Functions of Three Variables

Definition

The derivative of f(x,y) at $P_0(x_0,y_0,z_0)$ in the direction of the unit vector $\mathbf{u}=\langle u_1,u_2,u_3\rangle$ is the scalar

$$\left(\frac{df}{dt}\right)_{u,P_0} = \lim_{t \to 0} \frac{f(x_0 + tu_1, y_0 + tu_2, z_0 + tu_3) - f(x_0, y_0, z_0)}{t},$$

provided the limit exists.

Definition

Gradient vector: The gradient of f(x, y, z) is the vector

$$\nabla f = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j + \frac{\partial f}{\partial z}k = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle.$$

• The dirctional derivatives can be written as

$$D_{\mathsf{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \mathsf{u}$$

Example 3 If $f(x, y, z) = x \cos(y z)$,

- 1. Find the gradient of f
- 2. Find the directional derivative of f at (-1,0,0) in the direction of $u=\langle 2,3,-1\rangle$.
 - Properties of the Directional Derivative $D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = |\nabla f||\mathbf{u}|\cos\theta = |\nabla f|\cos\theta$
 - The function f increases most rapidly when u is the direction of ∇f , i.e., $\theta = 0$.
 - ② The function f decreases most rapidly when u is the direction of $-\nabla f$, i.e., $\theta = \pi$.
 - **3** Any direction u orthogonal to a $\nabla f \neq 0$ is a direction of zero change in f.

Example 4:

- 1. If $f(x,y) = x^2 + y^2$, find the rate of change of f at the point P(1,1) in the direction from P to Q(2,3).
- 2. In what direction does f increase most rapidly at (1,1)?
- 3. In what direction does f decrease most rapidly at (1,1)?
- 4. What are the directions of zero change in f at (1,1)?
 - Tangent Planes and Normal Lines Consider the smooth curve $\mathbf{r}(t) = \mathbf{g}(t)\mathbf{i} + h(t)\mathbf{j} + k(t)\mathbf{k}$ on the level surface f(x,y,z) = c. $\Rightarrow f((\mathbf{g}(t),h(t),k(t)) = c$. Using the Chain rule to Differentiate both sides, we have

$$\left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle \cdot \left\langle \frac{dg}{dt}, \frac{dh}{dt}, \frac{dk}{dt} \right\rangle = 0$$

So ∇f is normal to the curve's velocity vector $d\mathbf{r}/dt$ on the level surface.

• Tangent Plane and Normal Line The tangent plane to the **level surface** f(x,y,z)=c at the point $P_0(x_0,y_0,z_0)$:

$$\left. \frac{\partial f}{\partial x} \right|_{P_0} (x - x_0) + \left. \frac{\partial f}{\partial y} \right|_{P_0} (y - y_0) + \left. \frac{\partial f}{\partial z} \right|_{P_0} (z - z_0) = 0$$

The Normal line to the **level surface** f(x,y,z) = c at the point $P_0(x_0,y_0,z_0)$:

$$x = x_0 + f_x(P_0) t, y = y_0 + f_y(P_0) t, z = z_0 + f_z(P_0) t$$

Example 5:

Find the tangent plane and normal line of the surface $f(x,y,z) = x^2 + y^2 + z - 4 = 0$ at $P_0(1,1,2)$.

• Let F(x,y,z) = f(x,y) - z = 0. The plane tangent to a surface z = f(x,y) at $P_0(x_0,y_0,z_0)$:

$$f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)-(z-z_0)=0.$$

