13.6 Tangent Planes and Differentials

• Suppose that f is a smooth function. The plane tangent to a surface z = f(x, y) at the point $P_0(x_0, y_0, z_0)$ is

$$z-z_0 = f_x(x_0, y_0)(x-x_0) + f_y(x_0, y_0)(y-y_0),$$

where $z_0 = f(x_0, y_0)$.

Example1

- 1. Find the tangent plane to the surface $z=x^2+2y$ at the point (1,1,3).
- 2. Find the plane tangent to the surface $z=x\cos y-y\,e^x$ at the point (0,0,0)

- Linear Approximations
- **1** The linearization of f(x,y) at (x_0,y_0) is

$$L(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0).$$

2 L(x,y) is called the linear approximation of f at (x_0,y_0) .

Example2:

1. Find the linearization of

$$f(x,y) = 2xe^{xy}$$
 at the point $(-1,0)$.

- 2. Use it to approximate f(-1.1,0.1).
- 3. Compare the approximation with the actual value of f(-1.1,0.1).