14 Partial Derivatives

Dr. Jeongho Ahn

Department of Mathematics \& Statistics
ASU

Outline of Chapter 14

(1) Functions of Several Variables
(2) Limits and Continuity
(3) Partial Derivatives
(4) Tangent Planes and Linear Approximations
(6) The Chain Rule
(0) Directional Derivatives and the Gradient Vector
(0) Maximum and Minimum Values
(8) Lagrange Mutipliers

14.1 Functions of Several Variables

Definition

A function with more than two variables is a rule that assigns to each ordered pair $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ in a set D a unique real number denoted by $f\left(x_{1}, x_{2}, \cdots, x_{n}\right) . D$ is called the domain of f and its range is $\left\{f\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in D\right\}$.

Example1

For each of the following functions with two variables, evaluate $f(2,1)$ and find the domain.
(1)

$$
f(x, y)=\frac{\sqrt{x+y-1}}{x^{2}+y^{2}+1}
$$

(2)

$$
f(x, y)=y \ln \left(e^{x}+y^{2}\right)
$$

Definition

If f is a function with more than two variables with domain D, then the graph of f is the set of all points $\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$ such that $x_{n}=f\left(x_{1}, x_{2}, \cdots, x_{n-1}\right)$ and $\left(x_{1}, x_{2}, \cdots, x_{n-1}\right) \in D$.

Example2

The surface of the half sphere $g(x, y)=\sqrt{1-x^{2}-y^{2}}$ is a good example of graph.

Definition

The level curves of a function of more than two variables are the curves with equations $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=k$, where k is a constant.

Example3

Sketch the contour map of the function $g(x, y)=\sqrt{1-x^{2}-y^{2}}$ for $k=0,3 / 4,1$.

