14 Partial Derivatives

Dr. Jeongho Ahn

Department of Mathematics & Statistics

ASU

Dr. Jeongho Ahn Jeongho.ahn@csm.astate.edu

< ロ > < 同 > < 回 > <

э

Outline of Chapter 14

- Inctions of Several Variables
- 2 Limits and Continuity
- Partial Derivatives
- Tangent Planes and Linear Approximations
- The Chain Rule
- **o** Directional Derivatives and the Gradient Vector
- Ø Maximum and Minimum Values
- O Lagrange Mutipliers

Definition

A function with more than two variables is a rule that assigns to each ordered pair (x_1, x_2, \dots, x_n) in a set D a unique real number denoted by $f(x_1, x_2, \dots, x_n)$. D is called the domain of f and its range is $\{f(x_1, x_2, \dots, x_n) | (x_1, x_2, \dots, x_n) \in D\}$.

Example1

For each of the following functions with two variables, evaluate f(2,1) and find the domain. (1)

$$f(x,y) = \frac{\sqrt{x+y-1}}{x^2+y^2+1}$$

(2)

$$f(x,y) = y \ln(e^x + y^2)$$

Definition

If f is a function with more than two variables with domain D, then the graph of f is the set of all points $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ such that $x_n = f(x_1, x_2, \dots, x_{n-1})$ and $(x_1, x_2, \dots, x_{n-1}) \in D$.

Example2

The surface of the half sphere $g(x,y) = \sqrt{1-x^2-y^2}$ is a good example of graph.

Definition

The level curves of a function of more than two variables are the curves with equations $f(x_1, x_2, \dots, x_n) = k$, where k is a constant.

Example3

Sketch the contour map of the function $g(x,y) = \sqrt{1-x^2-y^2}$ for k = 0,3/4,1.