### 14.2 Limits and Continuity

- The definition of Limit of a function with several variables is similar to the definition of Limit with a single variable. However, there is a crucial difference between them: if $\left(x_{0}, y_{0}\right)$ lies in the interior of function $f$ 's domain, $(x, y)$ can approach $\left(x_{0}, y_{0}\right)$ from any direction.


## Definition

## Limit of a function of two variables

If for every number $\varepsilon>0$, there exists a corresponding number $\delta>0$ such that for all $(x, y)$ in the domain of $f$

$$
0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta \Rightarrow|f(x, y)-L|<\varepsilon
$$

then

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L .
$$

## Theorem

Properties of Limits of Functions of Two Variables: Suppose that

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L \quad \text { and } \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)=M .
$$

Constant Multiple Rule: $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} k f(x, y)=k L$ Sum and Difference of Rule: $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(f(x, y) \pm g(x, y))=L \pm M$
Product Rule: $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(f(x, y) \cdot g(x, y))=L \cdot M$
Quotient Rule: $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{f(x, y)}{g(x, y)}=\frac{L}{M}$
Power Rule: $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(f(x, y))^{r / s}=L^{r / s}$.

## Example1:

Find each of following limits
1.

$$
\lim _{(x, y) \rightarrow(0,1)} \frac{x-2 x y+2}{x^{2} y+3 x y-y^{3}}
$$

2. 

$$
\lim _{(x, y) \rightarrow(1,-2)} \sqrt{x^{2}+y^{2}}
$$

3. 

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}}
$$

## Fact

Two-Path Test for Nonexistence of a Limit
If a function $f(x, y)$ has different limits along two different paths as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$, then

$$
\nexists \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)
$$

## Theorem

## Sandwich(Squeeze) Theorem

Suppose that $g(x, y) \leq f(x, y) \leq h(x, y)$ in a neighborhood of $\left(x_{0}, y_{0}\right)$ and $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)=\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} h(x, y)=L$. Then we have $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L$.

## Example2:

1. Show that

$$
\nexists \lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2}-y^{2}}{x^{2}+y^{2}}
$$

2. Using the Sandwich Theorem, find

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{2}+y^{2}} \text { if it exists. }
$$

3. Show that

$$
\nexists \lim _{(x, y) \rightarrow(0.0)} f(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}
$$

## Definition

A function $f(x, y)$ is continuous at the point $\left(x_{0}, y_{0}\right)$ if

1. $f$ is defined at $\left(x_{0}, y_{0}\right)$
2. 

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y) \text { exists }
$$

3. 

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right) .
$$

- Note that a function is continuous if it is continuous at every point of its domain.


## Example3:

Show that

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

is not continuous at the origin.

