14.3 Partial Derivatives
1. Partial Derivative with respect to x at the point (xp, yp) is
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provided the limit exists.
2. Partial Derivative with respect to y at the point (xo, o) is
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provided the limit exists.

e Notation for a partial derivative of z = f(x,y).

@ For the points (x0,¥0): 9% (x0,¥0) or 92 (x0,¥0) or (X0, ¥0)

@ For a function: af, f, gi, Zy



@ Rule for Finding Partial Derivatives of z = f(x,y)

@ To find £, regard y as a constant and differentiate f(x,y)
w.r.t. x.

@ To find £, regard x as a constant and differentiate f(x,y)
w.r.t. y.

Examplel

L If f(x,y) =2x3+x3y% — y2, find £(1,2) and £,(1,1).

2. Find the values of df /dx and df/dy at the point at (2,—1) if
f(x,y) =x?>+2xy+3y +1.

3. Find df /dx if f(x,y) = xcosxy.

4. Find £, and f, if
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calculate £, and f,.
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@ Geometric iterpretation of Partial Derivatives:

Q@ Jf/dx at (xo0,¥0) gives the rate of change of f with respect to
x with fixed y at yp which is the rate of f in the direction of i
at (Xo,yo).

@ Jf/dy at (xo,y0) is similar to the definition of the partial
Derivative with respect to x at the point (xo, yo)-

If f(x,y)=1-—x>—2y?, find £(1,1) and £,(1,1) and interpret
these numbers as slopes.

1. Find z, and z, if z is defined implicitly as a function of x and y
by the equation

X2 +y3+2243xyz=2.
2. Find £, f, and £, if f(x,y,z) =€*Inyz




@ The second-order Partial Derivatives and their Notations:
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Example4

If f(x,y)=xsiny+ye ™, find
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Theorem

Clairaut’s Theorem (The Mixed Derivative Theorem)

If f(x,y) and its partial derivatives f., f,, and f, are defined
throughout an open disk D containing a point (a,b) and are all
continuous at (a,b), then

fy(a,b) = fx(a,b).

Verify uyy, = uyx if u(x,y) =xsin(2x+y).

o Laplace's Equation
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Solutions u(x,y) of the equation are called harmonic functions.
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Example6

Show that the function u(x,y) = eXcosy is a harmonic function.




