14.3 Partial Derivatives

Definition

1. Partial Derivative with respect to x at the point $\left(x_{0}, y_{0}\right)$ is

$$
\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

provided the limit exists.
2. Partial Derivative with respect to y at the point $\left(x_{0}, y_{0}\right)$ is

$$
\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

provided the limit exists.

- Notation for a partial derivative of $z=f(x, y)$.
(1) For the points $\left(x_{0}, y_{0}\right): \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$ or $\frac{\partial z}{\partial x}\left(x_{0}, y_{0}\right)$ or $f_{x}\left(x_{0}, y_{0}\right)$
(2) For a function: $\frac{\partial f}{\partial x}, f_{x}, \frac{\partial z}{\partial x}, z_{x}$
- Rule for Finding Partial Derivatives of $z=f(x, y)$
(1) To find f_{x}, regard y as a constant and differentiate $f(x, y)$ w.r.t. x.
(2) To find f_{y}, regard x as a constant and differentiate $f(x, y)$ w.r.t. y.

Example1

1. If $f(x, y)=2 x^{3}+x^{3} y^{2}-y^{2}$, find $f_{x}(1,2)$ and $f_{y}(1,1)$.
2. Find the values of $\partial f / \partial x$ and $\partial f / \partial y$ at the point at $(2,-1)$ if $f(x, y)=x^{2}+2 x y+3 y+1$.
3. Find $\partial f / \partial x$ if $f(x, y)=x \cos x y$.
4. Find f_{x} and f_{y} if

$$
f(x, y)=\frac{2 x}{x+\sin y}
$$

5. If

$$
f(x, y)=\sin \left(\frac{y}{x+y}\right)
$$

calculate f_{x} and f_{y}.

- Geometric iterpretation of Partial Derivatives:
(1) $\partial f / \partial x$ at $\left(x_{0}, y_{0}\right)$ gives the rate of change of f with respect to x with fixed y at y_{0} which is the rate of f in the direction of \mathbf{i} at $\left(x_{0}, y_{0}\right)$.
(2) $\partial f / \partial y$ at $\left(x_{0}, y_{0}\right)$ is similar to the definition of the partial Derivative with respect to x at the point $\left(x_{0}, y_{0}\right)$.

Example2

If $f(x, y)=1-x^{2}-2 y^{2}$, find $f_{x}(1,1)$ and $f_{y}(1,1)$ and interpret these numbers as slopes.

Example3

1. Find z_{x} and z_{y} if z is defined implicitly as a function of x and y by the equation

$$
x^{2}+y^{3}+z^{2}+3 x y z=2
$$

2. Find f_{x}, f_{y} and f_{z} if $f(x, y, z)=e^{x} \ln y z$

- The second-order Partial Derivatives and their Notations:

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}} \text { or } f_{x x} \\
& \frac{\partial^{2} f}{\partial y^{2}} \text { or } f_{y y} \\
& \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) \text { or } f_{y x} \\
& \frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) \text { or } f_{x y}
\end{aligned}
$$

Example4

If $f(x, y)=x \sin y+y e^{-x}$, find

$$
\frac{\partial^{2} f}{\partial x^{2}}, \quad \frac{\partial^{2} f}{\partial y \partial x}, \quad \frac{\partial^{2} f}{\partial y^{2}}, \quad \text { and } \frac{\partial^{2} f}{\partial x \partial y}
$$

Theorem

Clairaut's Theorem (The Mixed Derivative Theorem) If $f(x, y)$ and its partial derivatives f_{x}, f_{y}, and $f_{y x}$ are defined throughout an open disk D containing a point (a, b) and are all continuous at (a, b), then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

Example5

Verify $u_{x y}=u_{y x}$ if $u(x, y)=x \sin (2 x+y)$.

- Laplace's Equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Solutions $u(x, y)$ of the equation are called harmonic functions.

Example6

Show that the function $u(x, y)=e^{x} \cos y$ is a harmonic function.

