14.4 Tangent Planes and Linear Approximations

- Suppose that f is a smooth function. The plane tangent to a surface $z=f(x, y)$ at the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right),
$$

where $z_{0}=f\left(x_{0}, y_{0}\right)$.

Example1

1. Find the tangent plane to the surface $z=x^{2}+2 y$ at the point $(1,1,3)$.
2. Find the plane tangent to the surface $z=x \cos y-y e^{x}$ at the point $(0,0,0)$

- Linear Approximations
(1) The linearization of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ is

$$
L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

(2) $L(x, y)$ is called the linear approximation of f at $\left(x_{0}, y_{0}\right)$.

Example2:

1. Find the linearization of

$$
f(x, y)=2 x e^{x y} \text { at the point }(-1,0) .
$$

2. Use it to approximate $f(-1.1,0.1)$.
3. Compare the approximation with the actual value of $f(-1.1,0.1)$.
