14.5 The Chain Rule

- For functions with a single variable:

Let $u=f(x)$ and $x=g(t)$. If there exit f^{\prime} and g^{\prime}, then

$$
\begin{aligned}
& f(g(t))^{\prime}=f^{\prime}(g(t)) g^{\prime}(t) \\
& \frac{d u}{d t}=\frac{d u}{d x} \frac{d x}{d t} \text { in Leibniz's notation }
\end{aligned}
$$

Example1

1. Find the derivative of $u=\left(x^{3}+1\right)^{10}$.
2. Find the slope of tangent line to the curve $u=\cos ^{2} t$ at $t=\pi / 4$.

- However, for functions with more than two variables the Chain rule has several forms.

Theorem

Case I: If $u=f(x, y)$ has continuous f_{x} and f_{y} and there exist $x^{\prime}(t)$ and $y^{\prime}(t)$, then the composite $u=f(x(t), y(t))$ is differentiable function of t and

$$
\begin{aligned}
\frac{d f}{d t} & =f_{x}(x(t), y(t)) \cdot x^{\prime}(t)+f_{y}(x(t), y(t)) \cdot y^{\prime}(t) \text { or } \\
\frac{d u}{d t} & =\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
\end{aligned}
$$

Example1:

1. Apply the Chain rule to find the derivative of

$$
u=x y
$$

with respect to t along the path $x(t)=\cos t, y(t)=\sin t$. What is the derivative's value at $t=\pi / 4$?
2. If $z=x y^{2}+3 x^{2} y$, where $x(t)=\cos t$ and $y(t)=\sin 2 t$, find $d z / d t$ when $t=0$.

Theorem

Case II Suppose that $u=f(x, y), x=g(s, t), y=h(s, t)$ are differentiable, then u has partial derivatives w.r.t. r and s given by

$$
\begin{aligned}
& \frac{\partial u}{\partial s}=\frac{\partial f}{\partial x} \frac{d x}{d s}+\frac{\partial f}{\partial y} \frac{d y}{d s} \\
& \frac{\partial u}{\partial t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
\end{aligned}
$$

- s, t are independent variables and x, y are called intermediate variables and u is a dependent variable.

Example2

1. Express $\partial u / \partial t$ and $\partial u / \partial s$ in terms of t and s if

$$
u=2 x+y, \quad x=\frac{t}{s}, \quad y=t^{2}+\ln s
$$

2. Express $\partial u / \partial t$ and $\partial u / \partial s$ in terms of t and s if $u(s, t)=e^{r} \sin \theta, r(s, t)=s t, \theta(s, t)=\sqrt{s^{2}+t^{2}}$..

Theorem

General Version Suppose that $u=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a differentiable function of the variables $x_{1}, x_{2}, \cdots, x_{n}$ and
$x_{1}, x_{2}, \cdots, x_{n}$ are differentiable functions of the variable of
$t_{1}, t_{2}, \cdots, t_{m}$. Then u is a differentiable function of the variables
$t_{1}, t_{2}, \cdots, t_{m}$ and the partial derivatives of u are given by the form

$$
\begin{aligned}
\frac{\partial u}{\partial t_{1}} & =\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{1}}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{1}}+\cdots+\frac{\partial u}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{1}} \\
\frac{\partial u}{\partial t_{2}} & =\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{2}}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{2}}+\cdots+\frac{\partial u}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{2}} \\
\cdots & \cdots \\
\frac{\partial u}{\partial t_{m}} & =\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{m}}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{m}}+\cdots+\frac{\partial u}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{m}} .
\end{aligned}
$$

- It is helpful to draw the tree diagram in order to memorize the chain rules.

Example3

Use a tree diagram to write out the Chain Rule for the given case.

1. $u=f(x, y)$, where $x=x(r, s, t), y=y(r, s, t)$.
2. $w=f(x, y, z, t)$, where $x=x(u, v), y=y(u, v), z=z(u, v)$, and $t=t(u, v)$.

Example4

1. If $R=\ln \left(u^{2}+v^{2}\right)$, where $u=2 x+y$ and $v=x-3 y$, find the value of $\partial R / \partial x$ and $\partial R / \partial y$, when $x=y=1$.
2. If $u=x^{3} y+y^{2} z^{4}$, where $x=r s e^{-t}, y=r^{2} s \ln (t+1)$,
$z=r s^{2} \sin t$, find the value of $\partial u / \partial s$, when $r=1, s=-1, t=0$.

- Implicit Differentiation

(1) Suppose that $F(x, y)$ is differentiable and that $F(x, y(x))=0$ defines y as a differentiable function of x. Then at any point where $F_{y} \neq 0$,

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}} .
$$

(2) Suppose that $F(x, y, z)$ is differentiable and that $F(x, y, z(x, y))=0$ defines z as a differentiable function of x and y. Then at any point where $F_{z} \neq 0$,

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}, \quad \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} .
$$

- However, I do not suggest to memorize those formulas.

Example5

1. Find $d y / d x$ if $y^{2}-x^{2}-\sin x y=0$, where $y=y(x)$.
2. Find $\partial z / \partial x$ and $\partial z / \partial y$ if $x^{3}+y^{3}+z^{3}+2 x y z=5$. Also find $\partial z /\left.\partial x\right|_{(1,1,1)}$ and $\partial z /\left.\partial y\right|_{(1,1,1)}$. Note that $z=z(x, y)$.
