14.6 Directional Derivatives and the Gradient Vector

- Directional Derivatives in the plane Our main interest is the rate of change of a function $f(x(t), y(t))$ along a straight line.
Recall a line equation through a point $P_{0}\left(x_{0}, y_{0}\right)$ and parallel to the unit vector $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}$. Then the line equation is

$$
x(t)=x_{0}+t u_{1} \text { and } y(t)=y_{0}+t u_{2}
$$

Definition

Directional Derivative: The derivative of $f(x, y)$ at $P_{0}\left(x_{0}, y_{0}\right)$ in the direction of the unit vector $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ is the scalar

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t u_{1}, y_{0}+t u_{2}\right)-f\left(x_{0}, y_{0}\right)}{t}
$$

provided the limit exists.

- Other Notations for the directional derivative at a point $P_{0}\left(x_{0}, y_{0}\right)$ are

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\left(D_{\mathbf{u}} f\right)_{P_{0}}=\left(\frac{d f}{d t}\right)_{\mathbf{u}, P_{0}}
$$

- Note that a physical interpretation $\left(D_{\mathbf{u}} T\right)$ is the instantaneous rate of change of temperature in the direction \mathbf{u}.
- If the unit vector $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ or $\mathbf{u}=\langle\cos \theta, \sin \theta\rangle$, then

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) u_{1}+f_{y}(x, y) u_{2}=f_{x}(x, y) \cos \theta+f_{y}(x, y) \sin \theta
$$ where θ is an angle with the positive x-axis.

Example1

Find the directional derivatives $D_{\mathbf{u}} f(x, y)$ if

$$
f(x, y)=x^{3}-2 x y+3 y^{2}
$$

and \mathbf{u} is the unit vector given by angle $\theta=\pi / 3$. What is $D_{\mathbf{u}} f(1,2)$?

- Gradient is derived from the Directional Derivatives
(1) The rate of change of $f(x(t), y(t))$ with respect to t is

$$
D_{\mathbf{u}} f(x, y)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

where $x(t)$ and $y(t)$ are differentiable curve.
(2) Then the rate of change of $f(x, y)$ at $P_{0}\left(x_{0}, y_{0}\right)$ in the direction of the unit vector $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ along the line $x=x_{0}+t u_{1}$ and $y=y_{0}+t u_{2}$ is

$$
\begin{aligned}
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right) & =\left(\frac{\partial f}{\partial x}\right)_{P_{0}} \frac{d x}{d t}+\left(\frac{\partial f}{\partial y}\right)_{P_{0}} \frac{d y}{d t} \\
& =\left(\frac{\partial f}{\partial x}\right)_{P_{0}} u_{1}+\left(\frac{\partial f}{\partial y}\right)_{P_{0}} u_{2} \\
& =\left\langle\left(\frac{\partial f}{\partial x}\right)_{P_{0}},\left(\frac{\partial f}{\partial y}\right)_{P_{0}}\right\rangle \cdot\left\langle u_{1}, u_{2}\right\rangle .
\end{aligned}
$$

Definition

Gradient vector: The gradient of $f(x, y)$ is the vector

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle
$$

- The directional derivatives can be written as

$$
D_{\mathbf{u}} f(x, y)=\nabla f(x, y) \cdot \mathbf{u}
$$

which expresses the directional derivative in the direction of \mathbf{u} as the scalar projection of the gradient vector onto \mathbf{u}.

Example2:

1. Find the directional derivative of the function $f(x, y)=x^{3} y^{2}-2 y$ at the point $(-2,1)$ in the direction of the vector $\mathbf{v}=\langle 2,-3\rangle$.
2. Find the directional derivative of $f(x, y)=y e^{x}+\sin (x y)$ at the point $(1,0)$ in the direction of $\mathbf{v}=\mathbf{i}-\sqrt{3} \mathbf{j}$.

- Functions of Three Variables

Definition

The derivative of $f(x, y)$ at $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of the unit vector $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ is the scalar

$$
\left(\frac{d f}{d t}\right)_{\mathbf{u}, P_{0}}=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t u_{1}, y_{0}+t u_{2}, z_{0}+t u_{3}\right)-f\left(x_{0}, y_{0}, z_{0}\right)}{t}
$$

provided the limit exists.

Definition

Gradient vector: The gradient of $f(x, y, z)$ is the vector

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle
$$

- The dirctional derivatives can be written as

$$
D_{\mathbf{u}} f(x, y, z)=\nabla f(x, y, z) \cdot \mathbf{u}
$$

Example3

If $f(x, y, z)=x \cos (y z)$,

1. Find the gradient of f
2. Find the directional derivative of f at $(-1,0,0)$ in the direction of $\mathbf{u}=\langle 2,3,-1\rangle$.

- Properties of the Directional Derivative $D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f||\mathbf{u}| \cos \theta=|\nabla f| \cos \theta$
(1) The function f increases most rapidly when \mathbf{u} is the direction of ∇f, i.e., $\theta=0$.
(2) The function f decreases most rapidly when \mathbf{u} is the direction of $-\nabla f$, i.e., $\theta=\pi$.
(3) Any direction u orthogonal to a $\nabla f \neq 0$ is a direction of zero change in f.

Example 4:

1. If $f(x, y)=x^{2}+y^{2}$, find the rate of change of f at the point $P(1,1)$ in the direction from P to $Q(2,3)$.
2. In what direction does f increase most rapidly at $(1,1)$?
3. In what direction does f decrease most rapidly at $(1,1)$?
4. What are the directions of zero change in f at $(1,1)$?

- Tangent Planes and Normal Lines

Consider the smooth curve $\mathbf{r}(t)=g(t) \mathbf{i}+h(t) \mathbf{j}+k(t) \mathbf{k}$ on the level surface $f(x, y, z)=c . \Rightarrow f((g(t), h(t), k(t))=c$. Using the Chain rule to Differentiate both sides, we have

$$
\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle \cdot\left\langle\frac{d g}{d t}, \frac{d h}{d t}, \frac{d k}{d t}\right\rangle=0
$$

So ∇f is normal to the curve's velocity vector $d \mathbf{r} / d t$ on the level surface.

- Tangent Plane and Normal Line The tangent plane to the level surface $f(x, y, z)=c$ at the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$:

$$
\left.\frac{\partial f}{\partial x}\right|_{P_{0}}\left(x-x_{0}\right)+\left.\frac{\partial f}{\partial y}\right|_{P_{0}}\left(y-y_{0}\right)+\left.\frac{\partial f}{\partial z}\right|_{P_{0}}\left(z-z_{0}\right)=0
$$

The Normal line to the level surface $f(x, y, z)=c$ at the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$:

$$
x=x_{0}+f_{x}\left(P_{0}\right) t, y=y_{0}+f_{y}\left(P_{0}\right) t, z=z_{0}+f_{z}\left(P_{0}\right) t
$$

Example 5:

Find the tangent plane and normal line of the surface $f(x, y, z)=x^{2}+y^{2}+z-4=0$ at $P_{0}(1,1,2)$.

- Let $F(x, y, z)=f(x, y)-z=0$. The plane tangent to a surface $z=f(x, y)$ at $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$:

$$
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-z_{0}\right)=0 .
$$

