14.7 Maximum and Minimum Values

- For a function $f(x)$ of a single variable, we could look for local maxima and local minima, critical points, finding $x \in D$ such that $f^{\prime}(x)=0$. Note that $x \in D$ where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined is critical points.
- For a function $f(x, y)$ of two variables, it's a little harder to find local maxima, local minima, saddle points.

Definition

Definition of local extrema
Let $f(x, y)$ be defined on a neighborhood Ω of (a, b). Then

1. $f(a, b)$ is a local (relative) maximum value if $f(a, b) \geq f(x, y)$ for all $(x, y) \in \Omega$.
2. $f(a, b)$ is a local (relative) minimum value if $f(a, b) \leq f(x, y)$ for all $(x, y) \in \Omega$.

Theorem

First Partial Derivative test for local extrema $f(x, y)$ has local extrema at (a, b) and f_{x} and f_{y} exist in a neighborhood Ω of $(a, b) \quad \Rightarrow \quad f_{x}(a, b)=0$ and $f_{y}(a, b)=0$.

- The previous theorem is a sufficient but not necessary condition.

Definition

Critical Point

A point is called a critical point of f if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ or if one or both f_{x} and f_{y} do not exist.

Example1

Find the local extrema of the function

$$
f(x, y)=x^{2}+y^{2}+2 x-8 y+17
$$

Definition

Saddle point

A differentiable function $f(x, y)$ has a saddle point at a critical point (a, b) if in every open disk centered at (a, b) there are points (x, y) where $f(x, y)>f(a, b)$ and $f(x, y)<f(a, b)$. The point (a, b) is called a saddle point of f and the graph of f crosses its tangent plane at (a, b).

Theorem

Second partial derivatives Test for Local Extrema

Suppose that f and its first and second partial derivatives are continuous on domain D and $f_{x}(a, b)=f_{y}(a, b)=0$.

1. f has a local maximum at (a, b) if $f_{x x}<0$ and
$D=f_{x x} f_{y y}-f_{x y}^{2}>0$ at (a, b).
2. f has a local minimum at (a, b) if $f_{x x}>0$ and
$D=f_{x x} f_{y y}-f_{x y}^{2}>0$ at (a, b).
3. f has a saddle point at (a, b) if $D=f_{x x} f_{y y}-f_{x y}^{2}<0$ at (a, b).
4. No conclusion at (a, b) if $D=f_{x x} f_{y y}-f_{x y}^{2}=0$ at (a, b).

- In order to memorize the formula for D, it will be helpful to write it as a determinant:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=f_{x x} f_{y y}-\left(f_{x y}\right)^{2} .
$$

- Indeed, D is a determinant of the Hessian matrix.

Example2:

1. Find the local extrema of the function

$$
f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+1
$$

2. Find the local extrema or saddle points of the function $f(x, y)=x y$.
3. Find the local extrema and saddle points of the function

$$
f(x, y)=x^{4}+y^{4}-4 x y+3
$$

4. Find the shortest distance from the origin to the plane $x+2 y+z=1$.

Theorem

Extreme Value Theorem for the functions of two variables If f is continuous on a closed, bounded set $D \subset \mathbb{R}^{2}$, then f attains an absolute maximum and an absolute minimum at some points.

- If f is continuous on a domain D, how can we find the absolute (global) maximum values and minimum values of a continuous function f on the closed, bounded domain D ?
(1) List critical points in D.
(2) List the boundary points where f has extreme values.
(3) Compare those values from 1 step and 2 step.

Example3:

1. Find the absolute maximum values and minimum values of

$$
f(x, y)=1+2 x+2 y-x^{2}-y^{2}
$$

on the triangle in the first quadrant enclosed by the $x=0$ and $y=0, y=4-x$.
2. Find the absolute maximum values and minimum values of f on the set D.

$$
f(x, y)=x^{2}+y^{2}+x y^{2}+4, \quad D=\{(x, y)| | x|\leq 1,|y| \leq 1\} .
$$

