15 Vector Calculus

Dr. Jeongho Ahn

Department of Mathematics & Statistics

ASU

Outline of Chapter 15

- Vector Fields
- 2 Line Integrals
- The Fundamental Theorem for Line Integrals
- Green's Theorem
- Parametric Surfaces and Surface Area
- Surface Integrals
- Stokes' Theorem
- The Divergence Theorem

Example1

Examples of a vector field.

- 1. Wind velocity vectors
- 2. Ocean currents
- 3. Airflow past inclined airfoil.

Definitions

- 1. $D \in \mathbb{R}^2$ (plane region). A vector field on \mathbb{R}^2 is a function F that assigns to each point (x,y) in D a two-dimensional vector F(x,y).
- 2. $D \in \mathbb{R}^3$ (space region) . A vector field on \mathbb{R}^3 is a function F that assigns to each point (x,y,z) in D a three-dimensional vector F(x,y,z).

Example2

Find the gradient vector field of f.

1.
$$f(x,y) = ye^{xy}$$
 2. $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$

• We start a space curve C given by the parametric equations

$$x = x(t)$$
 $y = y(t)$ $z = z(t)$ $a \le t \le b$.

Definition

If f is defined on a smooth curve C given by the parametric equations, then the line integral of f along C is

$$\int_{C} f(x,y,z)ds = \lim_{n\to\infty} \sum_{i=1}^{n} f(x_{i}^{*},y_{i}^{*},z_{i}^{*}) \Delta s_{i}$$

provided this limit exists.

Recall the arc length

$$S(t) = \int_a^t |\mathsf{v}(\tau)| \, d\tau,$$

where
$$\mathbf{r}(t)=\langle g_1(t),g_2(t),g_3(t)
angle,\ \mathbf{v}(t)=\langle g_1'(t),g_2'(t),g_3'(t)
angle.$$

• More useful formula for the line integrals is

$$\int_{C} f(x,y)ds = \int_{a}^{b} f(x(t),y(t)) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt.$$

• Suppose that C is a piecewise-smooth curve: that is, $C = C_1 \cup C_2 \cup \cdots \cup C_n$. Then the integral of f along C is

$$\int_C f(x,y)ds = \int_{C_1} f(x,y)ds + \int_{C_2} f(x,y)ds + \cdots + \int_{C_n} f(x,y)ds.$$

ullet A vector representation of the line segment that starts at r_0 and ends at r_1 is given by

$$r(t) = (1-t)r_0 + tr_1 \quad 0 \le t \le 1.$$

Example1

Evaluate the line integral, where C is the given curve.

- 1. $\int_C 2y ds$, $C: x = t^2$, y = t, $0 \le t \le 1$.
- 2. $\int_C x^2 y ds$, C is the upper half of the unit circle $x^2 + y^2 = 1$.

When line integrals w.r.t. x and y occur together, we write

$$\int_{C} P(x,y)dx + \int_{C} Q(x,y)dy = \int_{C} P(x,y)dx + Q(x,y)dy.$$

Example2

Evaluate the line integral, where C is the given curve.

- 1. $\int_C (xy^2 \sqrt{x}) dy$, C is the arc of the curve $y = \sqrt{x}$ from (1,1) to (9,3).
- 2. $\int_C (x+yz)dx + xdy + 2xyzdz$, C consists of line segments from (0,0,0) to (1,2,-1) and from (1,2,-1) to (3,2,1).

Definition

Let F be a continuous vector field defined on a smooth curve C given by a vector function r(t) with $a \le t \le b$. Then the line integral of F along C is

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{C} \mathbf{F} \cdot \mathbf{T} ds,$$

where T is the unit tangent vector on C.

Example3

Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is given by the vector function $\mathbf{r}(t)$.

- 1. $F(x,y) = \langle xy, 3x^2 \rangle$, $r(t) = \langle t^3, t \rangle$, $0 \le t \le 1$.
- 2. $F(x, y, z) = \sin x i + \cos y j + xy k$, $r(t) = t i t^2 j + t^3 k$, $0 \le t \le 1$.

