15.2 Double integrals over general regions

- In this section we learn about how to evaluate double integrals over bounded Nonrectangular regions.
- There are two types of double integrals on a plane region D.
(1) If $f(x, y)$ is continuous on a type I region D such that $D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$, then

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

(2) If $f(x, y)$ is continuous on a type II region D such that $D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}$, then

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

- Note that the limits of the outer integrations must be constants.
- For regions that are more complicated, how do we find limits of intergation? We assume to integrate first w.r.t. y and then write x :

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

(1) Sketch the region and write the bounded curves.
(2) Find the y-limits of integration, using vertical lines. Note that y-limits are functions in terms of x.
(3) Find the x-limits of integration that will be numbers.

- If you evaluate double integrals with the order of integration reversed:

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(x)}^{h_{2}(x)} f(x, y) d x d y
$$

then we use horizontal lines in step2.

Example1

1. Evaluate the iterated integral

$$
\int_{0}^{\pi / 2} \int_{0}^{\sin \theta} e^{\cos \theta} d r d \theta
$$

2. Evaluate the double integral $\iint_{D}(2 x+y) d A$, where D is the region bounded by the two parabolas $y=2 x^{2}$ and $y=x^{2}+4$.
3. Evaluate the following integral:

$$
\iint_{D} y^{2} d A, \quad D=\{(x, y) \mid-1 \leq y \leq 1,-y-2 \leq x \leq y\}
$$

4. Evaluate the iterated integral

$$
\int_{0}^{1} \int_{0}^{y} y^{2} e^{x y} d x d y
$$

Example2

Example2 Define the function $f(x, y)$ to be

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{\sin x}{x} & \text { if } x \neq 0 \\
1 & \text { if } x=0 .
\end{array}\right.
$$

Then evaluate

$$
\iint_{R} f(x, y) d A
$$

where R is enclosed by x-axis and $y=x$ and the line $x=1$

- As you see the previous example, there is no general rule for choosing which order of integration will be the good one.

