### 15.9 Change of Variables in Multiple Integrals

- We recall a change of variable (a substitution rule) for the single integrals. If $x=g(u)$ is differentiable and $f$ is integrable, then

$$
\int_{a}^{b} f(x) d x=\int_{c}^{d} f(g(u)) g^{\prime}(u) d u
$$

where $a=g(c)$ and $b=g(d)$. Here we used $x$-substitution rather than $u$-substitution.

- For the double integrals we consider a change of variable that is given by a transformation $T: S \rightarrow R$ from the $u v$-plane to the $x y$-plane:

$$
T(u, v)=(x, y)
$$

where $x=g(u, v)$ and $y=h(u, v)$. We usually assume that $g, h \in C^{1}$.

## Example1

Find the image of the set $S$ under the given transformation.

1. $S=\{(u, v) \mid 0 \leq u \leq 1,0 \leq v \leq 1\} ; x=u^{2}-v^{2}, y=u v$
2. $S=\{(u, v) \mid 0 \leq u \leq 2,0 \leq v \leq 3\} ; x=2 u+3 v, y=u-v$
3. $S$ is the triangular region with vertices $(0,0),(1,1),(0,1)$; $x=u, y=v^{2}$

## Theorem

Change of Variables in a Double Integral: Suppose that $T$ is $1-1$ transformation. Letting the substitution $x=g(u, v)$ and $y=h(u, v)$, we can set up

$$
\iint_{R} f(x, y) d x d y=\iint_{S} f(g(u, v), h(u, v))|J(u, v)| d u d v
$$

where the Jacobian $J(u, v)(=\partial(x, y) / \partial(u, v))$ is

$$
J(u, v)=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u} .
$$

- How to use the given transformation to evaluate the double integrals.
(1) Solve the transformation for $x$ and $y$. This step may omit if the transformation is given by $x$ and $y$.
(2) Sketch the region $R$ (image of $S$ ) on the $x y$-plane and find the boundary of $R$.
(3) Using the substitution, find the boundary of $S$ and sketch the region $S$ (pre-image of $R$ ) on the $u v$-plane.
(9) Find the Jacobian (determinant) from step 1.
(5) Use the formula(derived by the substitution) in the Theorem.


## Example2

1. Find the Jacobian of the transformation.
(1) $x=4 u-v, y=u+2 v$
(2) $x=r \cos \theta, y=r \sin \theta$
(3) $x=e^{-r} \sin \theta, y=e^{r} \cos \theta$
2. Use the given transformation to evaluate the double integral.
(1) $\iint_{R}(x-3 y) d A$, where $R$ is the triangular region with vertices $(0,0),(2,1)$, and $(1,2) ; x=2 u+v, y=u+2 v$.
(2) $\iint_{R} x y d A$, where $R$ is the region in the first quadrant bounded by the lines $y=x$ and $y=4 x$ and the hyperbolas $x y=1, x y=4$; $x=u / v, y=v$.
3. Evaluate

$$
\iint_{R} \sqrt{x+y}(y-2 x)^{2} d A
$$

where $R$ is the triangular region with $x$-axis and $y$-axis and the line $y=-x+1$. Note that you need to take suitable substitutions.

