16 Vector Calculus

Dr. Jeongho Ahn
Department of Mathematics \& Statistics

ASU

Outline of Chapter 16

(1) Vector Fields
(2) Line Integrals
(3) The Fundamental Theorem for Line Integrals
(9) Green's Theorem
(5) Curl and Divergence

- Surface Integrals
(Stokes' Theorem
(8) The Divergence Theorem

16.1 Vector Fields

Example1

Examples of a vector field. 1. Wind velocity vectors
2. Ocean currents 3 . Airflow past inclined airfoil.

Definitions

1. $D \in \mathbb{R}^{2}$ (plane region). A vector field on \mathbb{R}^{2} is a function F that assigns to each point (x, y) in D a two-dimensional vector $F(x, y)$.
2. $D \in \mathbb{R}^{3}$ (space region). A vector field on \mathbb{R}^{3} is a function F that assigns to each point (x, y, z) in D a three-dimensional vector F(x,y,z).

Example2

1. Sketch the vector field \boldsymbol{F} by drawing a diagram.
(1) $\boldsymbol{F}(x, y)=-\boldsymbol{i}+\boldsymbol{j}(2) \boldsymbol{F}(x, y)=\boldsymbol{i}+(x-y) \boldsymbol{j}$
2. Find the gradient vector field of f.
$\begin{array}{ll}\text { (1) } f(x, y)=y e^{x y} & \text { (2) } f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}\end{array}$

16.2 Line Integrals

- We start a space curve C given by the parametric equations

$$
x=x(t) \quad y=y(t) \quad z=z(t) \quad a \leq t \leq b
$$

Definition

If f is defined on a smooth curve C given by the parametric equations, then the line integral of f along C is

$$
\int_{C} f(x, y, z) d s=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \Delta s_{i}
$$

provided this limit exists.

- Recall the arc length

$$
S(t)=\int_{a}^{t}|\mathbf{v}(\tau)| d \tau
$$

where $\mathbf{r}(t)=\left\langle g_{1}(t), g_{2}(t), g_{3}(t)\right\rangle, \mathbf{v}(t)=\left\langle g_{1}^{\prime}(t), g_{2}^{\prime}(t), g_{3}^{\prime}(t)\right\rangle$.

- More useful formula for the line integrals is

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

- Suppose that C is a piecewise-smooth curve: that is, $C=C_{1} \cup C_{2} \cup \cdots \cup C_{n}$. Then the integral of f along C is $\int_{C} f(x, y) d s=\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s+\cdots+\int_{C_{n}} f(x, y) d s$.
- A vector representation of the line segment that starts at r_{0} and ends at \mathbf{r}_{1} is given by

$$
\mathbf{r}(t)=(1-t) \mathbf{r}_{0}+\operatorname{tr}_{1} \quad 0 \leq t \leq 1
$$

Example1

Evaluate the line integral, where C is the given curve 1. $\int_{C} 2 y d s, C: x=t^{2}, y=t, 0 \leq t \leq 1$.
2. $\int_{C} x^{2} y d s, C$ is the upper half of the unit circle $x^{2}+y^{2}=1$.

- When line integrals w.r.t. x and y occur together, we write

$$
\int_{C} P(x, y) d x+\int_{C} Q(x, y) d y=\int_{C} P(x, y) d x+Q(x, y) d y
$$

Example2

Evaluate the line integral, where C is the given curve.

1. $\int_{C}\left(x y^{2}-\sqrt{x}\right) d y, C$ is the arc of the curve $y=\sqrt{x}$ from $(1,1)$ to $(9,3)$.
2. $\int_{C}(x+y z) d x+x d y+2 x y z d z, C$ consists of line segments from
$(0,0,0)$ to $(1,2,-1)$ and from $(1,2,-1)$ to $(3,2,1)$.

Definition

Let \mathbf{F} be a continuous vector field defined on a smooth curve C given by a vector function $\mathbf{r}(t)$ with $a \leq t \leq b$. Then the line integral of F along C is

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

where \mathbf{T} is the unit tangent vector on C.

Example3

Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is given by the vector function $\mathbf{r}(t)$.

1. $\mathbf{F}(x, y)=\left\langle x y, 3 x^{2}\right\rangle, \mathbf{r}(t)=\left\langle t^{3}, t\right\rangle, 0 \leq t \leq 1$.
2. $\mathbf{F}(x, y, z)=\sin x \mathbf{i}+\cos y \mathbf{j}+x y \mathbf{k}, \mathbf{r}(t)=t \mathbf{i}-t^{2} \mathbf{j}+t^{3} \mathbf{k}$, $0 \leq t \leq 1$.
