16.3 The Fundamental Theorem for Line Integrals

- Recall the F. T. of Calculus (II).

Theorem

Let C be a smooth curve given by the vector function $\mathbf{r}(t)$ with $a \leq t \leq b$. If f is smooth on C, then

$$
\int_{C} \nabla f \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a))
$$

- Independence of Path

(1) Suppose that any two paths C_{1} and C_{2} in the domain D have the same initial and terminal point. Then one implication of the previous Theorem is

$$
\int_{C_{1}} \nabla f \cdot d \mathbf{r}=\int_{C_{2}} \nabla f \cdot d \mathbf{r}
$$

(2) If $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$ then the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is called independent of path. In general, $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r} \neq \int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$.

- A vector field \mathbf{F} is called a conservative vector field if $\exists f$ such that $\mathbf{F}=\nabla f . f$ is called a potential function of \mathbf{F}.

Theorem

Suppose that C is any closed path (its terminal point coincides with its initial point) in D.
Then $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path in $D \Leftrightarrow \int_{C} \mathbf{F} \cdot d \mathbf{r}=0$.

- In the next theorem, we see that the only vector functions(fields) that are independent of path are conservative.

Theorem

1. Suppose that \mathbf{F} is a vector field that is continuous on an open connected region D. If $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path in D, then \mathbf{F} is a conservative vector field on D, i.e., $\exists f$ such that $\nabla f=\mathbf{F}$. 2. If $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ is a conservative vector field and P, Q are smooth on a domain, then we have

$$
\frac{\partial P}{\partial v}=\frac{\partial Q}{\partial v} \text { throughout } D \text {. }
$$

Theorem

Let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}=\langle P, Q\rangle$ be a vector on an open simply-connected region D. Suppose that P, Q are smooth and $\partial P / \partial y=\partial Q / \partial x$ throughout D. Then F is conservative.

Example1

Determine whether or not the following vector fields are conservative.

1. $\mathbf{F}(x, y)=(x-2 y) \mathbf{i}+(2 x+1) \mathbf{j}$ 2. $\mathbf{F}(x, y)=\left\langle 1+4 x y, 2 x^{2}-5 y\right\rangle$

Example2

Determine whether or not the vector field $\mathbf{F}=\left\langle 1+2 x y, x^{2}-3 y^{2}\right\rangle$ is conservative.

1. If it is, find a function f such that $\mathbf{F}=\nabla f$.
2. Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is given by

$$
\mathbf{r}(t)=\left\langle e^{t} \sin t, e^{t} \cos t\right\rangle, \quad 0 \leq t \leq \pi
$$

Example3

1. Find a function f such that $\mathbf{F}=\nabla f$.
2. Use part 1 to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the given curve C.

$$
\mathbf{F}(x, y, z)=\langle y z, x z, x y+2 z\rangle,
$$

where C is the line segment from $(1,0,-2)$ to $(4,6,-3)$.

- Example3 will be done in Section16.5.

Example4

1. Find a function f such that $\mathbf{F}=\nabla f$.
2. Use part 1 to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the given curve C.

$$
\mathbf{F}(x, y)=\left\langle x y^{2}, x^{2} y\right\rangle,
$$

where $C: \quad \mathbf{r}(t)=\left\langle t+\sin \frac{\pi t}{2}, t+\cos \frac{\pi t}{2}\right\rangle, \quad 0 \leq t \leq 1$.

