### 16.4 Green's Theorem

- Green's Theorem provides the relationship between a $\int_{C}$ around a simple closed curve $C$ and a $\iint_{D}$ over the plane region $D$ bounded by $C$.
- For the convention the positive orientation of a simple closed curve $C$ will be a single counterclockwise traversal of $C$.
- If $C$ is the given $\mathbf{r}(t), a \leq t \leq b$, then $D$ is always on the left as the point $\mathbf{r}(t)$ traverses $C$.


## Theorem

## Green's Theorem:

Let $C$ be a positively oriented, piecewise-smooth, simple-closed curve in the plane and $D$ be the region bounded by $C$. If $P$ and $Q$ are smooth on an open region that contains $D$, then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

where $\mathbf{F}=\langle P, Q\rangle$.

## Example1

Evaluate the line integral by two methods: (1) directly and (2) using Green's Theorem

$$
\int_{C} 4 x^{3} d x+2 x y d y
$$

where $C$ is the triangular curve consisting of the line segments $(0.0)$ to $(1.0)$, from (1.0) to (0.1), and from (0.1) to $(0.0)$.

## Example2

Evaluate the line integral by two methods: (1) directly and (2) using Green's Theorem

$$
\oint_{C}(x-y) d x+(x+y) d y
$$

$C$ is the circle $x^{2}+y^{2}=4$.

- Let $D$ be the region bounded by a simple-closed curve $C$. Then Green's Theorem provides the following formula for the area of $D$ :

$$
A=\oint_{C} x d y=-\oint_{C} y d x=\frac{1}{2} \oint_{C} x d y-y d x
$$

## Example3

Find the area enclosed by (1) the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ and (2) the circle $x^{2}+y^{2}=r^{2}$.

## Example4

Use Green's theorem to evaluate the line integral along the given positively oriented curve.

$$
\int_{C} y^{3} d x-x^{3} d y
$$

where $C$ is the circle $x^{2}+y^{2}=4$.

## Example5

Use Green's Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

$$
\mathbf{F}(x, y)=\left(e^{x}+x^{2} y\right) \mathbf{i}+\left(e^{y}-x y^{2}\right) \mathbf{j}
$$

where $C$ is the circle $x^{2}+y^{2}=4$ oriented clockwise.

