2.2 Separable Equations

- In this section, we consider first order DEs that can be solved by direct integration. Recall the general first order DE

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y(x)) \tag{1}
\end{equation*}
$$

By setting $M(x, y)=-f(x, y)$ and $N(x, y)=1$, (1) becomes

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{2}
\end{equation*}
$$

If M is a function in terms of only x and N is a function in terms of only y, the Eq. (2) can be written in the differential form

$$
\begin{equation*}
M(x) d x+N(y) d y=0 \tag{3}
\end{equation*}
$$

which is called to be separable. You are led to obtain an alternative differential form:

$$
\frac{d y}{d x}=-\frac{M(x)}{N(y)}
$$

We use cross multiplication and take integrals to find solutions.

Examples

. Show that the following DE

$$
\frac{d y}{d x}=\frac{x}{1+y^{2}}
$$

is separable and find a solution for the DE.
2. Solve the initial value problem (IVP)

$$
\frac{d y}{d x}=\frac{3 x^{2}+2 x+1}{2 y-1}, \quad y(0)=1
$$

and find a solution explicitly.
3. Solve the IVP

$$
y^{\prime}=y^{2}+2 x y^{2}, \quad y(0)=1
$$

and determine where the solution attains its maximum value.

