2.3 Existence and uniqueness of solutions of linear and nonlinear equations

- Existence and uniqueness: Does every IVP have exactly one solution? The question will be answered by the following Theorems.
- 1. For the first order **linear** DEs, we consider the following fundamental Theorem (1).

Theorem

If the functions $p, g \in C(I)$ with $x_0 \in I$ for an open interval I, then $\exists !$ solution y = y(x) that satisfies the DE

$$y' + p(x)y = g(x)$$

for each $x \in I$ and that also satisfies the initial condition $y(x_0) = y_0$, where y_0 is an initial data.

2. For the first order **nonlinear** DEs, the following Theorem (see the textbook pp. 56) will be considered.

Theorem

Assume that
$$f, \partial f/\partial y \in C((a, b) \times (c, d))$$
 with $(x_0, y_0) \in (a, b) \times (c, d)$. Let $h > 0$. Then in some interval $(x_0 - h, x_0 + h) \subset (a, b), \exists!$ solution $y = y(x)$ of IVP

$$\frac{dy}{dx} = f(x, y(x)), \quad y(x_0) = y_0.$$

- The proof for the Theorems requires great depth. So you may refer to advanced DEs books.
- Here is an **important remark**: the existence of solutions can be guaranteed on the basis of **the continuity of** *f* **alone**.