2.5 Exact Equations

- In this section, we consider a class of equations known as exact equations. Those equations which can be solved by elementary integration methods are rather special; most first order DEs cannot be solved in this way.
- Exact DEs have the following form;

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{1}
\end{equation*}
$$

Suppose that there is a function $F(x, y)$ such that

$$
\frac{\partial F(x, y)}{\partial x}=M(x, y), \quad \frac{\partial F(x, y)}{\partial y}=N(x, y)
$$

Then it follows from (1) that

$$
0=M(x, y)+N(x, y) \frac{d y}{d x}=\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y} \frac{d y}{d x}=\frac{d}{d x} F(x, y(x))
$$

Thus solutions y are given implicitly by

$$
F(x, y)=c, \quad \text { where } c \text { is an arbitrary constant. }
$$

- In order to consider systematic way of determining whether a given DE is exact, we provide the following Theorem.

Theorem

Let the functions M, N, M_{y}, and, $N_{x} \in C((\alpha, \beta) \times(\gamma, \delta))$. Then, the equation $M(x, y)+N(x, y) y^{\prime}=0$ is an exact $D E$ in an open rectangular region $(\alpha, \beta) \times(\gamma, \delta) \Longleftrightarrow M_{y}(x, y)=N_{x}(x, y)$ at each point of the rectangular region. That is, \exists a function F such that $F_{x}(x, y)=M(x, y), \quad F_{y}(x, y)=N(x, y) \Longleftrightarrow M$ and N satisfy the equation $M_{y}(x, y)=N_{x}(x, y)$.

- From the previous theorem, solutions of exact DEs are given implicitly by

$$
F(x, y(x))=c
$$

where c is arbitrary.

