2.6 Integrating Factors

Theorem

Let the functions M, N, M_{y}, and, $N_{x} \in C((\alpha, \beta) \times(\gamma, \delta))$.
Then, the equation $M(x, y)+N(x, y) y^{\prime}=0$ is an exact $D E$ in an open rectangular region $(\alpha, \beta) \times(\gamma, \delta) \Longleftrightarrow M_{y}(x, y)=N_{x}(x, y)$ at each point of the rectangular region. That is, \exists a function F such that $F_{x}(x, y)=M(x, y), \quad F_{y}(x, y)=N(x, y) \Longleftrightarrow M$ and N satisfy the equation $M_{y}(x, y)=N_{x}(x, y)$.

- If a DE is not exact, we find an integrating factor μ. See the following Theorem (pp. 84)
- We multiply by the integrating factor to get to an exact DE. Then we will use the same way as we did in the previous section.

Theorem

Let the functions M, N, M_{y}, and, $N_{x} \in C((\alpha, \beta) \times(\gamma, \delta))$.
(a) If $\left(M_{y}-N_{x}\right) / N$ is independent of y on $(\alpha, \beta) \times(\gamma, \delta)$ and we define

$$
p(x)=\frac{M_{y}-N_{x}}{N}
$$

then an integrating factor will be

$$
\mu(x)=e^{\int p(x) d x} .
$$

(b) If $\left(N_{x}-M_{y}\right) / M$ is independent of x on $(\alpha, \beta) \times(\gamma, \delta)$ and we define

$$
q(y)=\frac{N_{x}-M_{y}}{M}
$$

then an integrating factor will be

$$
\mu(y)=e^{\int q(y) d y}
$$

