3.1 Numerical Methods: the Explicit and Implicit Euler Method

- Recall the first order IVP

$$
\frac{d y}{d t}=f(t, y(t)), \quad y\left(t_{0}\right)=y_{0}
$$

Then there are two important facts;
(1) If $f, \partial f / \partial y \in C$, then the IVP has a unique solution y in some interval $/$ containing t_{0}.
(2) However, it is always not possible to find the solution y by symbolic manipulation of the DE.

- When f is not a simple function, numerical methods are highly recommendable to obtain approximations; the popular methods are the Explicit Euler's method (forward) and the Implicit Euler method (backward).
- We partition the interval $[a, b]$ uniformly:

$$
a=t_{0}<t_{1}<\cdots<t_{n} \cdots<t_{m-1}<t_{m}=b
$$

where $h=t_{n+1}-t_{n}$ with $n \geq 0$ is the size of the subintervals and $m=(b-a) / h$ is the number of the subintervals. Let w_{n} be an approximation at t_{n} for $n \geq 0$. Assume that $w_{0}=y_{0}$.
(1) Explicit (Forward)

We can set up the iterative formula:

$$
w_{n+1}=w_{n}+h f\left(t_{n}, w_{n}\right)
$$

(2) Implicit (Backward)

Its iterative formula is

$$
w_{n+1}=w_{n}+h f\left(t_{n+1}, w_{n+1}\right)
$$

- Note that the Implicit Method is stable numerically but solving the next step solution will be hard, depending on what type of the function f we have.

Example

- Consider the following IVP: for $t \in[0,1]$

$$
\left\{\begin{array}{c}
\frac{d y}{d t}=2-t+y \\
y(0)=1 .
\end{array}\right.
$$

Then find the exact solution. Use the explicit and implicit Euler's iterative formula to find the first three approximations with $h=0.01$. Estimate errors.
The following table shows the approximations and errors. E_{I} is an error by the implicit Euler method and E_{E} is an error by the explicit Euler method.

Table: Errors at the first three points

	$t=0.01$	$t=0.02$	$t=0.03$	$t=1$
E_{I}	0.0001	0.0002	0.0003	0.0026
E_{E}	0.0001	0.0002	0.0003	0.0030

Answer for the example

- Note that the exact solution is $y=2 e^{t}+t-1$. (Red: the exact solution, Green: the approximation by the Explicit, Blue: the approximation by the Implicit).

Figure: Comparison

- When you compute approximations at the first three steps, use your graphing calculator.
- Consider the following IVPs: for $t \geq 0$
(1) $\left\{\begin{array}{c}\frac{d y}{d t}=y, \\ y(0)=1 .\end{array}\right.$
(2) $\left\{\begin{array}{c}\frac{d y}{d t}-y=1, \\ y(0)=1 .\end{array}\right.$
(3) $\left\{\begin{array}{c}2 \frac{d y}{d t}=y-\frac{1}{2}, \\ y(0)=1 .\end{array}\right.$
(4) $\left\{\begin{array}{c}(t+1) \frac{d y}{d t}=y, \\ y(0)=1 .\end{array}\right.$
(5) $\left\{\begin{array}{c}\frac{d y}{d t}=(2 t+1) y, \\ y(0)=1 .\end{array}\right.$
(6) $\left\{\begin{array}{c}\frac{d y}{d t}-y=\cos t, \\ y(0)=1 .\end{array}\right.$

Then find the exact solution. Use the explicit and implicit Euler's iterative formula to find the first three approximations with $h=0.01$. Estimate errors.

