5.2 Constant Coefficient Homogeneous Equations

- All the steps to solve the homogeneous DEs with constant coefficients: $a y^{\prime \prime}(x)+b y^{\prime}(x)+c y(x)=0$. See Theorem 5.2.1 in the textbook (p.217).
(1) Switch it into the corresponding characteristic equation: $a r^{2}+b r+c=0$.
(2) Find its determinant $D=b^{2}-4 a c$.
(1) $D>0 \Rightarrow r=r_{1}, r_{2}$, i.e, there are two distinct real roots.

Then the solution will be $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$
(2) $D=0 \Rightarrow r=r_{1}$, i.e, there is a repeated real root. Then the solution will be $y=e^{r_{1} x}\left(c_{1}+c_{2} x\right)$.
(3) $D<0 \Rightarrow r=\lambda \pm i \omega$, i.e, there are two distinct complex roots. Then the solution will be $y=e^{\lambda x}\left(c_{1} \cos \omega x+c_{2} \sin \omega x\right)$.
(3) The arbitrary values $c_{1}, c_{2} \in \mathbb{R}$ will be determined when we solve IVPs.

