5.2 Constant Coefficient Homogeneous Equations

- All the steps to solve the homogeneous DEs with constant coefficients: ay"(x) + by'(x) + cy(x) = 0. See Theorem 5.2.1 in the textbook (p.217).
- Switch it into the corresponding characteristic equation: $ar^2 + br + c = 0.$
- Find its determinant D = b² 4ac.
 (1) D > 0 ⇒ r = r₁, r₂, i.e, there are two distinct real roots. Then the solution will be y = c₁e^{r₁x} + c₂e^{r₂x}
 (2) D = 0 ⇒ r = r₁, i.e, there is a repeated real root. Then the solution will be y = e^{r₁x} (c₁ + c₂x).
 (3) D < 0 ⇒ r = λ ± i ω, i.e, there are two distinct complex roots. Then the solution will be y = e^{λx} (c₁ cos ωx + c₂ sin ωx).
- Solve IVPs.
 Solve IVPs.