5.3-5.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

- Return to the nonhomogeneous second order linear DE

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x) \tag{1}
\end{equation*}
$$

where $p, q, g \in C(I)$ with the open interval I.

Theorem

The general solution of the nonhomogeneous equation (1) can be written in the following form

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+Y(x)
$$

where $\left\{y_{1}, y_{2}\right\}$ is a fundamental set of solutions of the homogeneous equation and Y is some specific solution of nonhomogeneous equation (1) which is called a particular solution of (1).

How to solve a nonhomogeneous Eq.

- By the Theorem, we go through three steps to solve.
(1) Find the general solution y_{c} (called complementary solution) of the corresponding homogeneous Eq.
(2) Find a particular solution $Y(x)$ of the nonhomogeneous Eq. (1) How to find it?: we make an initial guess about the form of the particular solution $Y(t)$. (Method of Undet. Coeffi.) (2) How to set up the initial guess?

	$g(x)$	$Y(x)$
	$e^{a x}$	$A e^{a x}$
	$\sin b x$ or $\cos b x$	$A \sin b x+B \cos b x$
	$e^{a x} \sin b x$ or $e^{a x} \cos b x$	$e^{a x}(A \sin b x+B \cos b x)$
	polynomials with the power n	$a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{1} x+a_{0}$

Then we substitute $Y(x)$ into the nonhomogeneous Eq. and determine the constants.
(3) The solution of $\mathrm{Eq}(1)$ is $y(x)=y_{c}(x)+Y(x)$, where y_{c} comes from the step 1 and Y from step 2 .

Examples1

- Suppose that $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g_{1}(x)+g_{2}(x)$ and $Y_{1}(x)$ and $Y_{2}(x)$ are particular solutions of the equation
$y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g_{1}(x)$ and $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g_{2}(x)$, respectively. Then, $Y_{1}(x)+Y_{2}(x)$ is a particular solution of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g_{1}(x)+g_{2}(x)$.
(1) Find a particular solution of
(1) $y^{\prime \prime}-3 y^{\prime}+2 y=2 e^{3 x}$
(2) $y^{\prime \prime}+y^{\prime}-6 y=x$.
(2) Find the general solution of
(1) $y^{\prime \prime}-3 y^{\prime}-4 y=2 \cos x$ (2) $y^{\prime \prime}-2 y^{\prime}+5 y=3 e^{2 x}$.
(3) Find the solution of the IVP:
$y^{\prime \prime}-2 y^{\prime}-3 y=3 x, \quad y(0)=5 / 3, \quad y^{\prime}(0)=6$.
(4) Find a particular solution of $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 x}+2 \sin x$.
(5) Find a particular solution of $y^{\prime \prime}-3 y^{\prime}-4 y=-6 e^{x}+x$.

Examples2

(1) Find the general solution of

$$
\text { (1) } y^{\prime \prime}-3 y^{\prime}+2 y=e^{-x}(2) y^{\prime \prime}+2 y^{\prime}+y=\sin x
$$

(2) Find the solution of the IVP:

$$
y^{\prime \prime}-4 y^{\prime}-12 y=12 x+16, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

(3) Find the solution of the IVP:

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\cos 2 x, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

(4) Find the solution of the IVP:

$$
y^{\prime \prime}+y=e^{x / 2}, \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

(5) Find a particular solution of $y^{\prime \prime}-3 y^{\prime}-4 y=2 e^{-x}$.

Note that the the method of undetermined coefficients do not work for the problem (\#5).

