5.3–5.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

• Return to the nonhomogeneous second order linear DE

$$y'' + p(x)y' + q(x)y = g(x),$$
 (1)

where $p, q, g \in C(I)$ with the open interval I.

Theorem

The general solution of the nonhomogeneous equation (1) can be written in the following form

$$y = c_1 y_1(x) + c_2 y_2(x) + Y(x),$$

where $\{y_1, y_2\}$ is a fundamental set of solutions of the **homogeneous** equation and Y is some specific solution of nonhomogeneous equation (1) which is called a particular solution of (1).

How to solve a nonhomogeneous Eq.

- By the Theorem, we go through three steps to solve.
- Find the general solution y_c (called complementary solution) of the corresponding homogeneous Eq.
- Find a particular solution Y(x) of the nonhomogeneous Eq.
 (1) How to find it?: we make an initial guess about the form of the particular solution Y(t). (Method of Undet. Coeffi.)
 (2) How to set up the initial guess?

· ·		
	g(x)	Y(x)
	e ^{ax}	Ae ^{ax}
	sin <i>bx</i> or cos <i>bx</i>	$A\sin bx + B\cos bx$
	$e^{ax} \sin bx$ or $e^{ax} \cos bx$	$e^{ax}(A\sin bx + B\cos bx)$
	polynomials with the power <i>n</i>	$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$
Then we substitute $Y(x)$ into the nonhomogeneous Eq. and		
determine the constants.		

Solution of Eq (1) is $y(x) = y_c(x) + Y(x)$, where y_c comes from the step 1 and Y from step 2.

Examples1

- Suppose that $y'' + p(x)y' + q(x)y = g_1(x) + g_2(x)$ and $Y_1(x)$ and $Y_2(x)$ are particular solutions of the equation $y'' + p(x)y' + q(x)y = g_1(x)$ and $y'' + p(x)y' + q(x)y = g_2(x)$, respectively. Then, $Y_1(x) + Y_2(x)$ is a particular solution of $y'' + p(x)y' + q(x)y = g_1(x) + g_2(x)$.
- Find a particular solution of (1) $y'' - 3y' + 2y = 2e^{3x}$ (2) y'' + y' - 6y = x.
- Sind the general solution of $(1) y'' 3y' 4y = 2\cos x (2) y'' 2y' + 5y = 3e^{2x}.$
- Solution of the IVP: y'' - 2y' - 3y = 3x, y(0) = 5/3, y'(0) = 6.
- Find a particular solution of $y'' 3y' 4y = 3e^{2x} + 2\sin x$.
- So Find a particular solution of $y'' 3y' 4y = -6e^x + x$.

Examples2

Find the general solution of (1) $y'' - 3y' + 2y = e^{-x}$ (2) $y'' + 2y' + y = \sin x$ 2 Find the solution of the IVP. y'' - 4y' - 12y = 12x + 16, y(0) = 1, y'(0) = 2. Sind the solution of the IVP. $y'' - 4y' + 4y = \cos 2x$, y(0) = 1, y'(0) = 0. ④ Find the solution of the IVP: $v'' + v = e^{x/2}$, v(0) = 1, v'(0) = -1. Sind a particular solution of $y'' - 3y' - 4y = 2e^{-x}$. Note that the the method of undetermined coefficients do

not work for the problem (#5).