7 Series Solutions of Linear Second Order Equations

Department of Mathematics \& Statistics
ASU

Outline of Chapter 7

(1) Review of Power Series
(2) Series Solution Near an Ordinary Point, Part I

- In this Chapter, we study much larger class of equations which has variable coefficients (coefficient functions). In order to solve those DEs, we require the representation of a given function by a power series.
- We seek series representation for solutions:

$$
\begin{equation*}
P_{0}(x) y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=0 . \tag{1}
\end{equation*}
$$

If $P_{0}(x) \neq 0$, then solutions of (1) can be written as power series

$$
y(x)=\sum_{n=0} a_{n}\left(x-x_{0}\right)^{n},
$$

where it converges in an open interval of the center $x=x_{0}$.

7.1 Review of Power Series

- A power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is said to converge at a point x if

$$
\lim _{m \rightarrow \infty} \sum_{n=0}^{m} a_{n}\left(x-x_{0}\right)^{n} \quad \text { exits. }
$$

It may converge for all x or it may converge for some values of x and not for others.

Theorem

(pp.307) For the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ exactly one of the following statements is true:
(1) The power series converges only for $x=x_{0}$.
(2) The power series converges for all value of x, on $(-\infty, \infty)$.
(3) There is a positive number R called the radius of convergence such that the power series converges if $\left|x-x_{0}\right|<R$ and diverges if $\left|x-x_{0}\right|>R$.
Note that (2) gives $R=\infty$.

Ratio Test

- If for a fixed value of x

$$
\begin{equation*}
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}\left(x-x_{0}\right)^{n+1}}{a_{n}\left(x-x_{0}\right)^{n}}\right|=\left|x-x_{0}\right| \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \tag{2}
\end{equation*}
$$

then the series converges absolutely if $R<1$. The series diverges if $R>1$ and the test fails (is inconclusive) if $R=1$.

Differentiation of Power series

Theorem

(7.1.4) A power series

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

with $R>0$ has derivatives of all differential orders in its open interval of convergence and successive derivatives can be obtained by repeatedly differentiating term by term:

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1} \\
f^{\prime \prime}(x) & =\sum_{n=2}^{\infty} n(n-1) a_{n}\left(x-x_{0}\right)^{n-2}
\end{aligned}
$$

Shifting the summation index in a power series

- For any integer k, the power series

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} b_{n}\left(x-x_{0}\right)^{n-k} \tag{3}
\end{equation*}
$$

can be rewritten as

$$
\sum_{n=n_{0}-k}^{\infty} b_{n+k}\left(x-x_{0}\right)^{n}
$$

that is, the power $n-k$ in (3) is shifted up by k and the initial index is shifted down by k.

Theorem

(7.1.6)
(a) If

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}
$$

for all $x \in\left(x_{0}-\rho, x_{0}+\rho\right)$ with $\rho>0$, then $a_{n}=b_{n}$ for all $n=0,1,2, \cdots$.
(b) If

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=0
$$

for all $x \in\left(x_{0}-\rho, x_{0}+\rho\right)$ with $\rho>0$, then $a_{n}=0$ for all $n=0,1,2, \cdots$.

- Assume that $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Rewrite the following expressions as the power series containing x^{n}.
(1) $x^{2} y^{\prime \prime}-y$
(2) $x^{2} y^{\prime \prime}+x y^{\prime}$
(3) $x y^{\prime \prime}-2 y$
(1) $y^{\prime \prime}-2 y^{\prime}$
(6) $y^{\prime \prime}+y$

