7.2 Series Solutions Near an Ordinary Point, Part I

Many physics applications give a rise to the following

$$P_0(x)y'' + P_1(x)y' + P_2(x)y = 0.$$
 (1)

 $P_0(x)$, $P_1(x)$, $P_2(x)$ are polynomials in a wide class of problems in mathematical physics. For example,

- **Bessel eq.**: $x^2y'' + xy' + (x^2 v^2)y = 0$ for the constant *v*.
- 2 Legendre eq.: $(1-x^2)y''-2xy'+\alpha(\alpha+1)y=0$ for the constant α .
 - Assume that P_0 , P_1 and P_2 have no common factors. Then x_0 is called an **ordinary point** of (1), if $P_0(x_0) \neq 0$ Otherwise, then x_0 is called a singular point.

Theorem

(7.2.1) Assume that $P_0(x) \neq 0$, P_1 and P_2 have no common factors. Let x_0 be a point such that $P_0(x_0) \neq 0$. Then every solution of

$$P_0(x)y'' + P_1(x)y' + P_2(x)y = 0.$$
 (2)

can be represented by a power series

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

that converges at least on the open interval $(x_0 - R, x_0 + R)$.

Examples

- Set up a recursive relation to find power seres solution $y(x) = \sum_{n=0}^{\infty} a_n x^n$ about the center $x_0 = 0$.
- y''-y=0.
- **2** y'' + y = 0.
- **3** y'' y' = 0.
- y'' + y' = 0.
- Seek power seres solution $y(x) = \sum_{n=0}^{\infty} a_n x^n$ about the center $x_0 = 0$:

$$y'' - xy = 0$$
, $y(0) = y'(0) = 1$.

Set up a recursice relation. Find a_n for $0 \le n \le 5$.