7.2 Series Solutions Near an Ordinary Point, Part I

- Many physics applications give a rise to the following

$$
\begin{equation*}
P_{0}(x) y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=0 \tag{1}
\end{equation*}
$$

$P_{0}(x), P_{1}(x), P_{2}(x)$ are polynomials in a wide class of problems in mathematical physics. For example,
(1) Bessel eq.: $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=0$ for the constant v.
(2) Legendre eq.: $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0$ for the constant α.

- Assume that P_{0}, P_{1} and P_{2} have no common factors. Then x_{0} is called an ordinary point of (1), if $P_{0}\left(x_{0}\right) \neq 0$ Otherwise, then x_{0} is called a singular point.

Theorem

(7.2.1) Assume that $P_{0}(x) \neq 0, P_{1}$ and P_{2} have no common factors. Let x_{0} be a point such that $P_{0}\left(x_{0}\right) \neq 0$. Then every solution of

$$
\begin{equation*}
P_{0}(x) y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=0 \tag{2}
\end{equation*}
$$

can be represented by a power series

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

that converges at least on the open interval $\left(x_{0}-R, x_{0}+R\right)$.

Examples

- Set up a recursive relation to find power seres solution $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ about the center $x_{0}=0$.
(1) $y^{\prime \prime}-y=0$.
(2) $y^{\prime \prime}+y=0$.
(3) $y^{\prime \prime}-y^{\prime}=0$.
(3) $y^{\prime \prime}+y^{\prime}=0$.
- Seek power seres solution $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ about the center $x_{0}=0$:

$$
y^{\prime \prime}-x y=0, \quad y(0)=y^{\prime}(0)=1
$$

Set up a recursice relation. Find a_{n} for $0 \leq n \leq 5$.

