8.2 The Inverse Laplace Transform

- Recall the definition of the Laplace transform:

$$
F(s)=\mathscr{L}(f)=\int_{0}^{\infty} e^{-s t} f(t) t d t .
$$

- Since \mathscr{L} is an injective (1-1) operator, we can also an inverse Laplace transform

$$
f=\mathscr{L}^{-1}(F) .
$$

Theorem

(Linear Property) Let $c_{1}, c_{2}, \cdots, c_{n}$ be constants. Then

$$
\begin{aligned}
& \mathscr{L}^{-1}\left(c_{1} F_{1}+c_{2} F_{2}+\cdots+c_{n} F_{n}\right) \\
& \quad=c_{1} \mathscr{L}^{-1}\left(F_{1}\right)+c_{2} \mathscr{L}^{-1}\left(F_{2}\right)+\cdots+c_{n} \mathscr{L}^{-1}\left(F_{n}\right) .
\end{aligned}
$$

- How to write Partial Fractions for improper rational functions, i.e.,

$$
\frac{P(s)}{Q(s)} \text { with } \operatorname{deg}(P) \leq \operatorname{deg}(Q)
$$

(1) If $Q(s)=\left(a_{1} s+b_{1}\right)\left(a_{2} s+b_{2}\right) \cdots\left(a_{n} s+b_{n}\right)$ with $\operatorname{deg}(Q)=n$, then there exist constants $A_{1}, A_{2}, \cdots, A_{n}$ such that

$$
\frac{P(s)}{Q(s)}=\frac{A_{1}}{\left(a_{1} s+b_{1}\right)}+\frac{A_{2}}{\left(a_{2} s+b_{2}\right)}+\cdots+\frac{A_{n}}{\left(a_{n} s+b_{n}\right)} .
$$

Note that $Q(s)$ does not have repeated factors and no factor is constant multiple of another.
(2) Suppose that $Q(s)=\left(a_{1} s+b_{1}\right)\left(a_{2} s+b_{2}\right) \cdots\left(a_{n} s+b_{n}\right)$ but some of the factors are repeated r times. For example, if $a_{1} s+b_{1}$ is repeated r times, then we can use

$$
\frac{A_{1}}{\left(a_{1} s+b_{1}\right)}+\frac{A_{2}}{\left(a_{1} s+b_{1}\right)^{2}}+\cdots+\frac{A_{r}}{\left(a_{1} s+b_{1}\right)^{r}} .
$$

(3) Suppose that Q contains irreducible quadratic factors, none of which is repeated. Then there exist constants $A_{1}, A_{2}, \cdots, A_{n}$ and $B_{1}, B_{2}, \cdots, B_{n}$ such that
$\frac{P(s)}{Q(s)}=\frac{A_{1} s+B_{1}}{\left(a_{1} s^{2}+b_{1} s+c_{1}\right)}+\frac{A_{2} s+B_{2}}{\left(a_{2} s^{2}+b_{2} s+c_{2}\right)}+\cdots+\frac{A_{n} s+B_{n}}{\left(a_{n} s^{2}+b_{n} s+c_{n}\right)}$.
(4) Suppose that Q contains some repeated irreducible quadratic factors. For example, if $\left(a_{n} s^{2}+b_{n} s+c_{n}\right)$ is repeated r times, then we can use

$$
\frac{A_{1} s+B_{1}}{\left(a_{n} s^{2}+b_{n} s+c_{n}\right)}+\frac{A_{2} s+B_{2}}{\left(a_{n} s^{2}+b_{n} s+c_{n}\right)^{2}}+\cdots+\frac{A_{r} s+B_{r}}{\left(a_{n} s^{2}+b_{n} s+c_{n}\right)^{r}} .
$$

