Theorem

Suppose that f, f' are continuous on $[0, \infty)$ and of exponential order s_0 and f' or f" are piecewise continuous on $[0, \infty)$. Then f, f' and f' have Laplace transforms for $s > s_0$ and

$$\mathscr{L}(f') = s\mathscr{L}(f) - f(0)$$

and

$$\mathscr{L}(f'') = s^2 \mathscr{L}(f) - sf(0) - f'(0).$$

In general, $\mathscr{L}\left\{f^{(n)}(t)\right\}$ for $n \ge 1$ is given by

$$\mathscr{L}\left\{f^{(n)}(t)\right\} = s^{n}\mathscr{L}\left\{f(t)\right\} - s^{n-1}f(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0).$$

- In order to solve IVPs with constants, we can use Laplace Transforms. Here are steps:
- Use the Laplace Transform to transform an IVP for an unknown function f in the t-domain into a simpler problem for F (or a nicer function F) in the s-domain. The Theorem in the previous page will be applied.
- 2 Solve this algebraic problem to find F.
- Invert F to obtain f.

Examples

Use the Laplace transforms to solve the following IVPs:

•
$$y'' + y = 0$$
, $y(0) = y'(0) = 1$
• $y'' - y' - 6y = 0$, $y(0) = 1$, $y'(0) = -1$
• $y'' - 2y' + 2y = 0$, $y(0) = 0$, $y'(0) = 1$
• $y'' - 4y' + 4y = 0$, $y(0) = y'(0) = 1$
• $y'' + y = t$, $y(0) = y'(0) = 1$