8.5 Constant Coefficient equations with piecewise continuous forcing functions

Theorem

Suppose that f is piecewise continuous on $[0, \infty)$ with jump discontinuities at t_1, t_2, \dots, t_n where $0 < t_1 < \dots < t_n$. Let k_0 and k_1 be arbitrary real numbers. There $\exists !$ function y defined on $[0, \infty)$ satisfying the following conditions (a) $y(0) = k_0$ and $y'(0) = k_1$ (b) y and y' are continuous on $[0, \infty)$. (c) y'' is defined on every open subinterval of $[0, \infty)$ that does not contain any of the points t_1, \dots, t_n and

$$ay'' + by' + cy = f(t)$$

on every such interval, where $a \neq 0$, b, c are constants. (d) y" has limits from right and left at t_1, \dots, t_n . How to solve the following IVPs

$$ay'' + by' + cy = \left\{ egin{array}{cc} f_0(t), & 0 \leq t < t_1, \ f_1(t), & t \geq t_1, \end{array} & y(0) = k_0, & y'(0) = k_1. \end{array}
ight.$$

(1) Method#1 (step1) Find the solution y_0 on $[0, t_1)$ satisfying

$$ay'' + by' + cy = f_0(t)$$
 $y(0) = k_0$, $y'(0) = k_1$.

(step2) Compute $c_0 = y_0(t_1)$ and $c_1 = y'_0(t_1)$. (step3) Find the solution y_1 on $[t_1, \infty)$ satisfying

$$ay'' + by' + cy = f_1(t)$$
 $y(t_1) = c_0$, $y'(t_1) = c_1$.

(step4) Obtain the solution y as

$$y = \left\{ egin{array}{c} y_0(t), & 0 \leq t < t_1, \ y_1(t), & t \geq t_1. \end{array}
ight.$$

(2) Method#2: Use Laplace transforms.