9.2 Higher Order Constant Coefficient Homogeneous Eqs.

- The nth order linear homogeneous DE with constants a_{i} for $i=0,1,2, \cdots, n$ can be written by

$$
L[y]=a_{0} y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=0 .
$$

By the similar idea of what we did for the second order DEs, we can set up the characteristic Eq.

$$
Z(r)=a_{0} r^{n}+a_{1} r^{n-1}+\cdots+a_{n-1} r+a_{n}=0
$$

- Unlike the second order DEs, we cannot find solutions for the Eqs. of nth order in general. There are some ways such as the synthetic division or complex analysis to solve the characteristic Eqs.
- Depending on the type of solutions of $Z(r)=0$, we consider the following cases.
(1) Solutions r are real and nonrepeated, i.e., $r=r_{i} \in \mathbb{R}$ for $i=1,2, \cdots, n$. Then the general solution becomes

$$
y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}+\cdots+c_{n} e^{r_{n} t} .
$$

(2) Solutions r are complex and nonrepeated, i.e., $r=\lambda_{j} \pm i \mu_{j}$. Then the general solution becomes $y=e^{\lambda_{1} t}\left(c_{1} \cos \mu_{1} t+d_{1} \sin \mu_{1} t\right)+\cdots+e^{\lambda_{j} t}\left(c_{j} \cos \mu_{j} t+d_{j} \sin \mu_{j} t\right)+\cdots$

The general solution seems to be unclear. We will understand this case completely, by doing examples.
(3) Solutions r are repeated.
(1) If the real root r is repeated s times, then the general solution becomes

$$
y=c_{1} e^{r t}+c_{2} t e^{r t}+c_{3} t^{2} e^{r t}+\cdots+c_{s} t^{s-1} e^{r t}
$$

(2) If $r=\lambda \pm i \mu \in \mathbb{C}$ and the complex root is repeated s times, the general solution becomes

$$
\begin{aligned}
y= & e^{\lambda t}\left(c_{1} \cos \mu t+d_{1} \sin \mu t\right)+e^{\lambda t} t\left(c_{2} \cos \mu t+d_{2} \sin \mu t\right) \\
& +\cdots+e^{\lambda t} t^{s-1}\left(c_{s} \cos \mu t+d_{s} \sin \mu t\right) .
\end{aligned}
$$

- How to find solutions of the following Eq.: for any $a \in \mathbb{R}$

$$
\begin{equation*}
r^{n}=a \quad \text { with } n \geq 1 \tag{1}
\end{equation*}
$$

(1) Switch a into the polar form:

$$
a=|a|(\cos (2 m \pi+\theta)+i \sin (2 m \pi+\theta))=|a| e^{i(2 m \pi+\theta)} .
$$

(2) From the original Eq. (1) we take n the radical root. Then for $m=0,1,2, \cdots, n-1$ we have the following solutions

$$
r=|a|^{1 / n} e^{i(2 m \pi+\theta) / n}=|a|^{1 / n}\left(\cos \left(\frac{2 m \pi+\theta}{n}\right)+i \sin \left(\frac{2 m \pi+\theta}{n}\right)\right)
$$

