1.3 Propositional Equivalences

Definitions

- 1. A Tautology: a compound proposition (c. p.) that is always true
- 2. A Contradiction: a c. p. that is always false
- 3. A Contingency: a c. p. that is neither a tautology nor a contra.

Example1

- 1. $p \lor \sim p$: tautology
- 2. $p \land \sim p$: contradiction

Hint: We can use the truth tables to check them out.

Definitions

- 1. Compound proposition (C. P.) that has the same truth values in all possible cases is called **logically equivalent (L.E.)**.
- 2. The C. P.s p and q are called **L.E.** if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ (or $p \Leftrightarrow q$) denotes that p and q are called L.E..

Several Laws

- De Morgan's laws:
 - 1. $\sim (p \land q) \equiv \sim p \lor \sim q$ 2. $\sim (p \lor q) \equiv \sim p \land \sim q$
- Two distributive laws:
 - 1. $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
 - 2. $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Example2

- 1. Prove De Morgan's laws.
- 2. Prove the two distributive laws.
- 3. Show that $p \rightarrow q \equiv \sim p \bigvee q$.
 - Conditional disjunction equivalence (Look at p.28) which is a significant role in understanding all the equivalences: $p \rightarrow q \equiv \sim p \lor q$

Logical Equivalences

• Some Important L.E.s

Equivalence	Name	Equivalence	Name
$p \wedge T \equiv p$	Identity	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Assoc.
$p \lor F \equiv p$		$(p \land q) \land r \equiv p \land (q \land r)$	
$p \lor T \equiv T$	Domi.	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distri.
$p \wedge F \equiv F$		$p \bigvee (q \land r) \equiv (p \bigvee q) \land (p \bigvee r)$	
$p \wedge p \equiv p$	ldemp.	\sim $(p \land q) \equiv \sim p \lor \sim q$	De Mor.
$p \lor p \equiv p$		\sim $(p \lor q) \equiv \sim p \land \sim q$	
\sim (\sim p) \equiv p	D.neg.	$p \bigvee (p \bigwedge q) \equiv p$	Absorp.
		$p igwedge (p igee q) \equiv p$	
$p \wedge q \equiv q \wedge p$	Comm.	$ ho \wedge \sim ho \equiv F$	Nega.
$p \lor q \equiv q \lor p$	Comm.	$p \bigvee \sim p \equiv T$	ivega.

Other L.E.s

L.E.s involving Conditional Statements

Equivalence	Equivalence	
$p \to q \equiv \sim p \lor q$	$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$	
$p \rightarrow q \equiv \sim q \rightarrow \sim p$	$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$	
$p \lor q \equiv \sim p \to q$	$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$	
$p \land q \equiv \sim (p \rightarrow \sim q)$	$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$	
$\sim (p \rightarrow q) \equiv p \land \sim q$		

Example3

- 1. Show that $\sim (p \rightarrow q) \equiv p \land \sim q$.
- 2. Show that $\sim (p \lor (\sim p \land q)) \equiv \sim p \land \sim q$.
- 3. Show that $(p \land q) \rightarrow (p \lor q) \equiv T$.