1.5 Nested Quantifiers (N. Qs)

N. Qs are nested if one Q is within the scope of another.
Example: ∀x∃y(x + y = 1) can be easily understood as

$$\begin{aligned} \forall x \ Q(x) \\ Q(x) \ \text{is } \exists y \ P(x,y) \\ P(x,y) \ \text{is } (x+y=1) \end{aligned}$$

Example1

Translate into English the following statements. $D = \mathbb{R}$. (1) $\forall x \forall y (x + y = y + x)$. (2) $\forall x \forall y ((x > 0) \land (y > 0) \rightarrow (x y > 0))$.

Example2

Determine the truth value of the following nested quantifications, $D = \mathbb{Z}$. (1) $\forall n \exists m (n^2 \le m)$ (2) $\exists n \forall m (n m = m)$ (3) $\exists n \exists m (n^2 + m^2 = 5)$ (4) $\forall n \forall m \exists p (p = (m + n)/3)$

The Order of Universal (Existential) Quantifiers

Example3

1. Let P(x,y): x + y = y + x. Tell the truth values of $\forall x \forall y P(x,y)$ and $\forall y \forall x P(x,y)$, where $D = \mathbb{R}$. 2. Let P(x,y): x + y = 2. Tell the truth values of $\exists x \exists y P(x,y)$ and $\exists y \exists x P(x,y)$, where $D = \mathbb{Z}$.

• From the previous example, we can see that even if the order of nested **universal (existential)** quantifiers in a statement is changed, the meaning of the quantified statements will be the same.

The Order of mixtures of U. and E. Quantifiers

 The order of nested existential and universal quantifiers in a statement has to be considered with more careful treatment.

Example4

1. Let Q(x,y): x + y = 1. Tell the truth values of $\exists y \forall x Q(x,y)$ and $\forall x \exists y Q(x,y)$, where $D = \mathbb{R}$. 2. Let P(x,y,z): x + y = z. Tell the truth values of $\forall x \forall y \exists z Q(x,y,z)$ and $\exists z \forall x \forall y P(x,y,z)$, where $D = \mathbb{R}$.

 As we did in the previous example, switching the order of nested existential and universal quantifiers in a statement may make a difference. But switching the order may not make a difference. Here is an example.

Example5

Let Q(x,y): xy = 1. Tell the truth values of $\exists y \forall x Q(x,y)$ and $\forall x \exists y Q(x,y)$, where $D = \mathbb{R}$.

• The following table will summarize the meanings of different possible quantifications.

Statement	When True(T)?	When False(F)?
$\forall x \forall y P(x,y)$	P(x,y):T for	There is a pair x, y for
$\forall y \forall x P(x,y)$	every pair x, y	which $P(x, y)$: F
$\forall x \exists y P(x,y)$	For every x there is y	There is an x such that
	for which $P(x,y)$: T	P(x,y): F for every y
$\exists x \forall y P(x,y)$	There is an x for which	For every x there is a y
	P(x,y):T for every y	for which $P(x, y)$: F
$\exists x \exists y P(x,y)$	There is a pair x, y for	P(x,y):F for every
$\exists y \exists x P(x,y)$	which $P(x,y)$: T	pair x, y

• From Nested Quantifiers into English

Example6

1 .Let $D = \{(x, y) \mid x, y \text{ are students in ASU}\}$ be the domain. Then, translate into English the statement $\forall x (C(x) \lor \exists y (C(y) \land F(x, y))),$ where C(x): "x has a computer", F(x, y) is "x and y are friends". 2. Q(x, y) : x has sent an email message to y, where $D = \{(x, y) | x, y \text{ are students in ASU}\}$. Express the followings in English. (1) $\exists x \exists y Q(x, y)$ (2) $\forall y \exists x Q(x, y)$ 3. Translate the following nested quantifications into English, where $D = \mathbb{R}$. (1) $\exists x \forall y (xy = y)$ (2) $\forall x \forall y ((x < 0) \land (y < 0)) \rightarrow (xy > 0))$

• From English into Nested Quantifiers

Example7

Express the following statements as a logical expression involving predicates, quantifiers, and logical connectives.

(1) Everyone has exactly one best friend, D is a set of all people.

(2) All math and computer science students need to take Discrete Structures. D is a set of C.S and math students.

(3) Every student in our class has taken at least one mathematics course.

 $D = \{(x, y) | x \text{ is a student in our class and } y \text{ is a math course} \}.$